A hybrid neural network model for short-term wind speed forecasting based on decomposition, multi-learner ensemble, and adaptive multiple error corrections

2021 ◽  
Vol 165 ◽  
pp. 573-594
Author(s):  
Hui Liu ◽  
Rui Yang ◽  
Tiantian Wang ◽  
Lei Zhang
2020 ◽  
Vol 2020 ◽  
pp. 1-10 ◽  
Author(s):  
Lizhen Wu ◽  
Chun Kong ◽  
Xiaohong Hao ◽  
Wei Chen

Short-term load forecasting (STLF) plays a very important role in improving the economy and stability of the power system operation. With the smart meters and smart sensors widely deployed in the power system, a large amount of data was generated but not fully utilized, these data are complex and diverse, and most of the STLF methods cannot well handle such a huge, complex, and diverse data. For better accuracy of STLF, a GRU-CNN hybrid neural network model which combines the gated recurrent unit (GRU) and convolutional neural networks (CNN) was proposed; the feature vector of time sequence data is extracted by the GRU module, and the feature vector of other high-dimensional data is extracted by the CNN module. The proposed model was tested in a real-world experiment, and the mean absolute percentage error (MAPE) and the root mean square error (RMSE) of the GRU-CNN model are the lowest among BPNN, GRU, and CNN forecasting methods; the proposed GRU-CNN model can more fully use data and achieve more accurate short-term load forecasting.


Sign in / Sign up

Export Citation Format

Share Document