Economic and life cycle assessment of recycling municipal glass as a pozzolan in portland cement concrete production

2018 ◽  
Vol 129 ◽  
pp. 240-247 ◽  
Author(s):  
Emily L. Tucker ◽  
Christopher C. Ferraro ◽  
Steven J. Laux ◽  
Timothy G. Townsend
2010 ◽  
Vol 64 (2) ◽  
pp. 129-137 ◽  
Author(s):  
Velislav Vidojkovic ◽  
Tamara Boljanac ◽  
Andjelka Brankovic ◽  
Milica Vlahovic ◽  
Sanja Martinovic ◽  
...  

Sulfur concrete was prepared by using the initial components: sand as an aggregate, modified sulfur binder, and talc, alumina, microsilica, and fly ash as fillers. Portland cement concrete was made of the same aggregate and fillers and portland cement. The durability of prepared concrete samples was tested in following aggressive solutions: 10% HCl, 20% H2SO4, and 3% NaCl as a function of time. Changes in mass and strength of the sulfur concrete were monitored periodicallly during the immersion time of 360 days in above solutions. These changes were used as a measure of deterioration level. It should be highlighted that the samples with the ash and especially talc exhibit higher durability in the solutions of HCl and H2SO4 than the samples with alumina and microsilica. In the solutions of NaCl all samples shown excellent durability while the samples with talc were the best. Portland cement concrete samples after two months lost 20 % of mass and shown degradation of mechanical properties. By usage of sulfur for sulfur concrete production, huge environmental problem regarding storage of waste sulfur from oil refining process is solved. On the other hand, sulfur concrete with its low price has an excellent quality for the application in aggressive environments unlike more expensive PCC.


1997 ◽  
Vol 503 ◽  
Author(s):  
B. K. Diefenderfer ◽  
I. L. Al-Qadi ◽  
J. J. Yoho ◽  
S. M. Riad ◽  
A. Loulizi

ABSTRACTPortland cement concrete (PCC) structures deteriorate with age and need to be maintained or replaced. Early detection of deterioration in PCC (e.g., alkali-silica reaction, freeze/thaw damage, or chloride presence) can lead to significant reductions in maintenance costs. However, it is often too late to perform low-cost preventative maintenance by the time deterioration becomes evident. By developing techniques that would enable civil engineers to evaluate PCC structures and detect deterioration at early stages (without causing further damage), optimization of life-cycle costs of the constructed facility and minimization of disturbance to the facility users can be achieved.Nondestructive evaluation (NDE) methods are potentially one of the most useful techniques ever developed for assessing constructed facilities. They are noninvasive and can be performed rapidly. Portland cement concrete can be nondestructively evaluated by electrically characterizing its complex dielectric constant. The real part of the dielectric constant depicts the velocity of electromagnetic waves in PCC. The imaginary part, termed the “loss factor,” describes the conductivity of PCC and the attenuation of electromagnetic waves.Dielectric properties of PCC have been investigated in a laboratory setting using a parallel plate capacitor operating in the frequency range of 0.1 to 40.1MIHz. This capacitor set-up consists of two horizontal-parallel plates with an adjustable separation for insertion of a dielectric specimen (PCC). While useful in research, this approach is not practical for field implementation. A new capacitor probe has been developed which consists of two plates, located within the same horizontal plane, for placement upon the specimen to be tested. Preliminary results show that this technique is feasible and results are promising; further testing and evaluation is currently underway.


Sign in / Sign up

Export Citation Format

Share Document