photocatalytic decomposition
Recently Published Documents


TOTAL DOCUMENTS

769
(FIVE YEARS 132)

H-INDEX

70
(FIVE YEARS 11)

Author(s):  
Liming Liu ◽  
Cuixia Yan ◽  
Lei Gao ◽  
Wei Shangguan ◽  
Jian-Qing Dai ◽  
...  

Abstract Exploring two-dimensional materials with excellent photoelectricity properties is of great theoretical significance and practical value for developing new photocatalysts, electronics and photonic devices. Here, using first-principle calculations, we designed and analyzed systematically a series of α, β and γ phase structures of two-dimensional group IV-V monolayers (IV-V, IV = C, Si, Ge, Sn, Pb;V = N, P, As, Sb, Bi), most of them are semiconductors. Among them, γ-GeN and α-SnP monolayers with thermodynamic and kinetic stability (at 300K) have been further studied due to their wide range of energy band gaps (γ-GeN: 2.54 eV, α-SnP:1.34 eV). The two band gaps are greater than the free energy for water splitting (1.23 eV), which are crucial for photocatalytic decomposition of water. The γ-GeN and α-SnP monolayers present excellent photocatalystics properties in PH=0/7 and PH=10 environments, respectively. Moreover, both of the monolayers show strong light absorption coefficients greater than 105 cm-1 in the visible and ultraviolet regions. In addition, it is found that the band edge positions and band gap sizes of γ-GeN and α-SnP monolayers can be regulated by biaxial strain. Benefitting from the wide selection of energy band gaps and high absorption coefficients, the γ-GeN and α-SnP monolayers are the next generation of promising candidate materials for photocatalysts, nanoelectronics and optoelectronics.


2021 ◽  
Vol 623 ◽  
pp. 413342
Author(s):  
Xiaocheng Hu ◽  
Hengshuai Li ◽  
Haiquan Hu ◽  
Chenglin Bai ◽  
Cailong Liu ◽  
...  

Author(s):  
Chengzhi Zhou ◽  
Yanlong Sun ◽  
Fan Zhang ◽  
Yuandong Wu

The photocatalytic degradation of minocycline was studied by using polyvinylidene fluoride–polyvinylpyrrolidone–TiO2 (PVDF–PVP–TiO2) fiber mats prepared by an electrospinning technology. The influences of the TiO2 dosage, minocycline concentrations, inorganic anions, pH values, and dissolved organic matter (DOM) concentrations on the degradation kinetics were investigated. A mass of 97% minocycline was degraded in 45 min at 5% TiO2 dosage. The corresponding decomposition rate constant was 0.069 min−1. The inorganic anions affected the minocycline decomposition in the order of HCO3− > Cl− > SO42− > NO3−, which was confirmed by the results of electron spin resonance (ESR) spectra. The lowest electrical energy per order (EEO) was 6.5 Wh/L. Over five cycles, there was no change in the photocatalytic performance of the degrading minocycline. Those investigations suggested that effective degradation of minocycline could be reached in the PVDF–PVP–TiO2 fiber mats with a low energy consumption, good separation and, good recovery. Three photocatalytic decomposition pathways of minocycline were proposed: (i) hydroxyl substitution of the acylamino group; (ii) hydroxyl substitution of the amide group, and (iii) a cleavage of the methyl groups and further oxidation of the amino group by OH. Potential risks caused by TP159 and TP99 should not be ignored, while the TP90 are nontoxic. Tests indicated that the toxicity of the photocatalytic process may be persistent if minocycline and its products were not mineralized completely.


2021 ◽  
Vol 8 (4) ◽  
pp. 295-302
Author(s):  
Soheila Amiri-Hosseini ◽  
Yalda Hashempour

Background: Malachite green (MG) is widely used as a fungicide, Bactericide parasiticide in the aquaculture industry, as a food additive, medical disinfectant, and also, as a dye for materials such as silk, leather, paper, etc. In this study, the photocatalytic removal of MG from aqueous solutions using TiO2-containing nanocomposites was reviewed. Methods: In this study, four databases (PubMed, Web of Science, ScienceDirect, and Scopus) were systematically searched to collect studies on the decomposition of MG using nanocomposites containing TiO2 under UV light radiation. Results: In total, 10 related and eligible studies were selected. Based on the results, TiO2 was doped with iron, Sn, Ag, Si, and Ni. The highest percentage of photocatalytic decomposition for MG was observed in Sn > Ni > Ag > Fe > Si. The removal efficiency of MG in the studied papers was between 75%-100%. Conclusion: Recombinant nanocomposites had a higher dye removal percentage than uncombined ones because they play an important role in the photocatalytic process of dye, by producing free radicals.


Processes ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 2046
Author(s):  
Thomas Ellwood ◽  
Luka A. Živković ◽  
Petr Denissenko ◽  
Rufat Sh. Abiev ◽  
Evgeny V. Rebrov ◽  
...  

The effect of forced periodic modulation of several input parameters on the rate of photocatalytic decomposition of formic acid over a TiO2 thin film catalyst has been investigated in a continuously stirred tank reactor. The kinetic model was adopted based on the literature and it includes acid adsorption, desorption steps, the formation of photocatalytic active sites and decomposition of the adsorbed species over the active titania sites. A reactor model was developed that describes mass balances of reactive species. The analysis of the reactor was performed with a computer-aided nonlinear frequency response method. Initially, the effect of amplitude and frequency of four input parameters (flowrate, acid concentration, temperature and light intensity) were studied. All single inputs provided only a minor improvement, which did not exceed 4%. However, a modulation of two input parameters, inlet flowrate and the acid molar fraction, considerably improved the acid conversion from 80 to 96%. This is equivalent to a factor of two increase in residence time at steady-state operation at the same temperature and acid concentration.


2021 ◽  
Vol 2076 (1) ◽  
pp. 012056
Author(s):  
Menglin Sun

Abstract Different BiOCl hierarchical nanostructures with controllable morphologies were synthesized by a facile glycerol-mediated solvothermal method. Every products were subsequently and well crystallized characterized by a range of methods, such as scanning electron microscopy (SEM), X-ray powder diffraction (XRD), high-resolution transmission microscopy (HRTEM), transmission electron microscopy (TEM), selected area electron diffraction (SAED). The photocatalytic properties of the samples were further investigated through photocatalytic decomposition of Methyl Orange (MO) dye. The BiOCl hierarchical nanostructures was as a result of efficient photocatatlytic activity under UV light irradiation, which can degrade MO in a few minutes.


Catalysts ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1281
Author(s):  
Piotr Rychtowski ◽  
Beata Tryba ◽  
Hubert Fuks ◽  
Maria Ángeles Lillo-Ródenas ◽  
Maria Carmen Román-Martínez

TiO2 was placed in heat-treatment at the temperature of 400–500 °C under flow of hydrogen gas in order to introduce some titania surface defects. It was observed that hole centers in TiO2 were created during its heat treatment up to 450 °C, whereas at 500 °C some Ti3+ electron surface defects appeared. The type of titania surface defects had a great impact on the mechanism of acetaldehyde decomposition under irradiation of artificial visible light. Formation of O•− defects improved both acetaldehyde decomposition and mineralization due to the increased oxidation of adsorbed acetaldehyde molecules by holes. Contrary to that, the presence of electron traps and oxygen vacancies in titania (Ti3+ centers) was detrimental for its photocatalytic properties towards acetaldehyde decomposition. It was proved that transformation of acetaldehyde on the TiO2 with Ti3+ defects proceeded through formation of butene complexes, similar as on rutile-type TiO2. Formed acetic acid, upon further oxidation of butene complexes, was strongly bound with the titania surface and showed high stability under photocatalytic process. Therefore, titania sample heat-treated with H2 at 500 °C showed much lower photocatalytic activity than that prepared at 450 °C. This study indicated the great impact of titania surface defects (hole traps) in the oxidation of acetaldehyde and opposed one in the case of defects in the form of Ti3+ and oxygen vacancies. Oxidation abilities of TiO2 seem to be important in the photocatalytic decomposition of volatile organic compounds (VOCs) such as acetaldehyde.


Sign in / Sign up

Export Citation Format

Share Document