Common rostrocaudal gradient of output from human intercostal motoneurones during voluntary and automatic breathing

2011 ◽  
Vol 175 (1) ◽  
pp. 20-28 ◽  
Author(s):  
Anna L. Hudson ◽  
Simon C. Gandevia ◽  
Jane E. Butler
2019 ◽  
Vol 123 ◽  
pp. e520-e535 ◽  
Author(s):  
Ege Ülgen ◽  
Pınar Kuru Bektaşoğlu ◽  
M. Aydın Sav ◽  
Özge Can ◽  
Ayça Erşen Danyeli ◽  
...  

2009 ◽  
Vol 102 (3) ◽  
pp. 1560-1576 ◽  
Author(s):  
Brian R. Noga ◽  
Dawn M. G. Johnson ◽  
Mirta I. Riesgo ◽  
Alberto Pinzon

Monoamines are strong modulators and/or activators of spinal locomotor networks. Thus monoaminergic fibers likely contact neurons involved in generating locomotion. The aim of the present study was to investigate the serotonergic innervation of locomotor-activated neurons within the thoraco-lumbar spinal cord following induction of hindlimb locomotion. This was determined by immunohistochemical co-localization of serotonin (5-HT) fibers or 5-HT7/5-HT2A/5-HT1A receptors with cells expressing the activity-dependent marker c-fos. Experiments were performed on paralyzed, decerebrate cats in which locomotion was induced by electrical stimulation of the mesencephalic locomotor region. Abundant c-fos immunoreactive cells were observed in laminae VII and VIII throughout the thoraco-lumbar segments of locomotor animals. Control sections from the same segments showed significantly fewer labeled neurons, mostly within the dorsal horn. Multiple serotonergic boutons were found in close apposition to the majority (80–100%) of locomotor cells, which were most abundant in lumbar segments L3–7. 5-HT7 receptor immunoreactivity was observed on cells across the thoraco-lumbar segments (T7–L7), in a dorsoventral gradient. Most locomotor-activated cells co-localized with 5-HT7, 5-HT2A, and 5-HT1A receptors, with largest numbers in laminae VII and VIII. Co-localization of c-fos and 5-HT7 receptor was highest in the L5–L7 segments (>90%) and decreased rostrally (to ∼50%) due to the absence of receptors on cells within the intermediolateral nucleus. In contrast, 60–80 and 35–80% of c-fos immunoreactive cells stained positive for 5-HT2A and 5-HT1A receptors, respectively, with no rostrocaudal gradient. These results indicate that serotonergic modulation of locomotion likely involves 5-HT7/5-HT2A/5-HT1A receptors located on the soma and proximal dendrites of serotonergic-innervated locomotor-activated neurons within laminae VII and VIII of thoraco-lumbar segments.


Neuroreport ◽  
1992 ◽  
Vol 3 (2) ◽  
pp. 161-164 ◽  
Author(s):  
Pieter Voorn ◽  
Gerrit J. Docter

Stroke ◽  
2017 ◽  
Vol 48 (3) ◽  
pp. 587-595 ◽  
Author(s):  
Stefan T. Gerner ◽  
Joji B. Kuramatsu ◽  
Sebastian Moeller ◽  
Angelika Huber ◽  
Hannes Lücking ◽  
...  

Development ◽  
1997 ◽  
Vol 124 (5) ◽  
pp. 959-969 ◽  
Author(s):  
S.M. Lee ◽  
P.S. Danielian ◽  
B. Fritzsch ◽  
A.P. McMahon

The developing vertebrate mesencephalon shows a rostrocaudal gradient in the expression of a number of molecular markers and in the cytoarchitectonic differentiation of the tectum, where cells cease proliferating and differentiate in a rostral to caudal progression. Tissue grafting experiments have implicated cell signalling by the mesencephalic-metencephalic (mid-hindbrain) junction (or isthmus) in orchestrating these events. We have explored the role of Wnt-1 and FGF8 signalling in the regulation of mesencephalic polarity. Wnt-1 is expressed in the caudal mesencephalon and Fgf8 in the most rostral metencephalon. Wnt-1 regulates Fgf8 expression in the adjacent metencephalon, most likely via a secondary mesencephalic signal. Ectopic expression of Fgf8 in the mesencephalon is sufficient to activate expression of Engrailed-2 (En-2) and ELF-1, two genes normally expressed in a decreasing caudal to rostral gradient in the posterior mesencephalon. Ectopic expression of Engrailed-1 (En-1), a functionally equivalent homologue of En-2 is sufficient to activate ELF-1 expression by itself. These results indicate the existence of a molecular hierarchy in which FGF8 signalling establishes the graded expression of En-2 within the tectum. This in turn may act to specify other aspects of A-P polarity such as graded ELF-1 expression. Our studies also reveal that FGF8 is a potent mitogen within the mesencephalon: when ectopically expressed, neural precursors continue to proliferate and neurogenesis is prevented. Taken together our results suggest that FGF8 signalling from the isthmus has a key role in coordinately regulating growth and polarity in the developing mesencephalon.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Maria Graciela Cersosimo

The diagnosis of Parkinson’s disease (PD) relies on clinical features whereas pathological confirmation is only possible with autopsy examination. The neuropathological hallmarks of PD are neuronal loss and the presence of inclusions termed Lewy bodies/neurites in affected regions. A major component of these inclusions is phosphorylated alpha-synuclein (α-SYN) protein. There is evidence thatα-SYN pathology is widely distributed outside the central nervous system in patients with PD. The gastrointestinal tract is importantly affected byα-SYN containing inclusions and typically there is a rostrocaudal gradient for the distribution of the pathology. The highest amounts of Lewy bodies/neurites are found at the submandibular gland together with the lower esophagus and the lowest amounts are found in the rectum. Autopsy findings prompted research aimed at achieving in vivo pathological diagnosis of PD by demonstrating the presence ofα-SYN pathology in biopsy material of these peripheral accessible tissues. So far, biopsy studies of the gut have demonstrated the presence ofα-SYN pathology in the salivary glands, stomach, duodenum, colon, and rectum. Further research is necessary in order to determine which are the most sensitive targets for in vivoα-SYN pathology detection and the safest techniques for these approaches in patients with PD.


Sign in / Sign up

Export Citation Format

Share Document