scholarly journals Gastrointestinal Biopsies for the Diagnosis of Alpha-Synuclein Pathology in Parkinson’s Disease

2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Maria Graciela Cersosimo

The diagnosis of Parkinson’s disease (PD) relies on clinical features whereas pathological confirmation is only possible with autopsy examination. The neuropathological hallmarks of PD are neuronal loss and the presence of inclusions termed Lewy bodies/neurites in affected regions. A major component of these inclusions is phosphorylated alpha-synuclein (α-SYN) protein. There is evidence thatα-SYN pathology is widely distributed outside the central nervous system in patients with PD. The gastrointestinal tract is importantly affected byα-SYN containing inclusions and typically there is a rostrocaudal gradient for the distribution of the pathology. The highest amounts of Lewy bodies/neurites are found at the submandibular gland together with the lower esophagus and the lowest amounts are found in the rectum. Autopsy findings prompted research aimed at achieving in vivo pathological diagnosis of PD by demonstrating the presence ofα-SYN pathology in biopsy material of these peripheral accessible tissues. So far, biopsy studies of the gut have demonstrated the presence ofα-SYN pathology in the salivary glands, stomach, duodenum, colon, and rectum. Further research is necessary in order to determine which are the most sensitive targets for in vivoα-SYN pathology detection and the safest techniques for these approaches in patients with PD.

2020 ◽  
Author(s):  
Rachel Underwood ◽  
Bing Wang ◽  
Aneesh Pathak ◽  
Laura Volpicelli-Daley ◽  
Talene A. Yacoubian

SUMMARYParkinson’s disease and Dementia with Lewy Bodies are two common neurodegenerative disorders marked by proteinaceous aggregates composed primarily of the protein α-synuclein. α-Synuclein is hypothesized to have prion-like properties, by which misfolded α-synuclein induces the pathological aggregation of endogenous α-synuclein and neuronal loss. Rab27a and Rab27b are two highly homologous Rab GTPases that regulate α-synuclein secretion, clearance, and toxicity in vitro. In this study, we tested the impact of Rab27a/b on the transmission of pathogenic α-synuclein. Double knockout of both Rab27 isoforms eliminated α-synuclein aggregation and neuronal toxicity in primary cultured neurons exposed to fibrillary α-synuclein. In vivo, Rab27 double knockout mice lacked fibril-induced α-synuclein inclusions, dopaminergic neuron loss, and behavioral deficits seen in wildtype mice with fibril-induced inclusions. Studies using AlexaFluor488-labeled α-synuclein fibrils revealed that Rab27a/b knockout prevented α-synuclein internalization without affecting bulk endocytosis. Rab27a/b knockout also blocked the cell-to-cell spread of α-synuclein pathology in multifluidic, multichambered devices. This study provides critical insight into the role of Rab GTPases in Parkinson’s disease and identifies Rab27s as key players in the progression of synucleinopathies.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Kathrin Brockmann ◽  
Corinne Quadalti ◽  
Stefanie Lerche ◽  
Marcello Rossi ◽  
Isabel Wurster ◽  
...  

AbstractThe clinicopathological heterogeneity in Lewy-body diseases (LBD) highlights the need for pathology-driven biomarkers in-vivo. Misfolded alpha-synuclein (α-Syn) is a lead candidate based on its crucial role in disease pathophysiology. Real-time quaking-induced conversion (RT-QuIC) analysis of CSF has recently shown high sensitivity and specificity for the detection of misfolded α-Syn in patients with Parkinson's disease (PD) and dementia with Lewy bodies (DLB). In this study we performed the CSF RT-QuIC assay in 236 PD and 49 DLB patients enriched for different genetic forms with mutations in GBA, parkin, PINK1, DJ1, and LRRK2. A subgroup of 100 PD patients was also analysed longitudinally. We correlated kinetic seeding parameters of RT-QuIC with genetic status and CSF protein levels of molecular pathways linked to α-Syn proteostasis. Overall, 85% of PD and 86% of DLB patients showed positive RT-QuIC α-Syn seeding activity. Seeding profiles were significantly associated with mutation status across the spectrum of genetic LBD. In PD patients, we detected positive α-Syn seeding in 93% of patients carrying severe GBA mutations, in 78% with LRRK2 mutations, in 59% carrying heterozygous mutations in recessive genes, and in none of those with bi-allelic mutations in recessive genes. Among PD patients, those with severe GBA mutations showed the highest seeding activity based on RT-QuIC kinetic parameters and the highest proportion of samples with 4 out of 4 positive replicates. In DLB patients, 100% with GBA mutations showed positive α-Syn seeding compared to 79% of wildtype DLB. Moreover, we found an association between α-Syn seeding activity and reduced CSF levels of proteins linked to α-Syn proteostasis, specifically lysosome-associated membrane glycoprotein 2 and neurosecretory protein VGF.These findings highlight the value of α-Syn seeding activity as an in-vivo marker of Lewy-body pathology and support its use for patient stratification in clinical trials targeting α-Syn.


Life ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 804
Author(s):  
Luca Magistrelli ◽  
Elena Contaldi ◽  
Cristoforo Comi

Parkinson’s disease (PD) is a common and progressive neurodegenerative disease, caused by the loss of dopaminergic neurons in the substantia nigra pars compacta in the midbrain, which is clinically characterized by a constellation of motor and non-motor manifestations. The latter include hyposmia, constipation, depression, pain and, in later stages, cognitive decline and dysautonomia. The main pathological features of PD are neuronal loss and consequent accumulation of Lewy bodies (LB) in the surviving neurons. Alpha-synuclein (α-syn) is the main component of LB, and α-syn aggregation and accumulation perpetuate neuronal degeneration. Mutations in the α-syn gene (SNCA) were the first genetic cause of PD to be identified. Generally, patients carrying SNCA mutations present early-onset parkinsonism with severe and early non-motor symptoms, including cognitive decline. Several SNCA polymorphisms were also identified, and some of them showed association with non-motor manifestations. The functional role of these polymorphisms is only partially understood. In this review we explore the contribution of SNCA and its product, α-syn, in predisposing to the non-motor manifestations of PD.


2018 ◽  
Author(s):  
Tim E. Moors ◽  
Christina A. Maat ◽  
Daniel Niedieker ◽  
Daniel Mona ◽  
Dennis Petersen ◽  
...  

AbstractPost-translational modifications of alpha-synuclein (aSyn), particularly phosphorylation at Serine 129 (Ser129-p) and truncation of its C-terminus (CTT), have been implicated in Parkinson’s disease (PD) pathology. To gain more insight in the relevance of Ser129-p and CTT aSyn under physiological and pathological conditions, we investigated their subcellular distribution patterns in normal aged and PD brains using highly-selective antibodies in combination with 3D multicolor STED microscopy. We show that CTT aSyn localizes in mitochondria in PD patients and controls, whereas the organization of Ser129-p in a cytoplasmic network is strongly associated with pathology. Nigral Lewy bodies show an onion skin-like architecture, with a structured framework of Ser129-p aSyn and neurofilaments encapsulating CTT aSyn in their core, which displayed high content of proteins and lipids by label-free CARS microscopy. The subcellular phenotypes of antibody-labeled pathology identified in this study provide evidence for a crucial role of Ser129-p aSyn in Lewy body formation.


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Ricardo Guerrero-Ferreira ◽  
Nicholas MI Taylor ◽  
Daniel Mona ◽  
Philippe Ringler ◽  
Matthias E Lauer ◽  
...  

Parkinson’s disease is a progressive neuropathological disorder that belongs to the class of synucleinopathies, in which the protein alpha-synuclein is found at abnormally high concentrations in affected neurons. Its hallmark are intracellular inclusions called Lewy bodies and Lewy neurites. We here report the structure of cytotoxic alpha-synuclein fibrils (residues 1–121), determined by cryo-electron microscopy at a resolution of 3.4 Å. Two protofilaments form a polar fibril composed of staggered β-strands. The backbone of residues 38 to 95, including the fibril core and the non-amyloid component region, are well resolved in the EM map. Residues 50–57, containing three of the mutation sites associated with familial synucleinopathies, form the interface between the two protofilaments and contribute to fibril stability. A hydrophobic cleft at one end of the fibril may have implications for fibril elongation, and invites for the design of molecules for diagnosis and treatment of synucleinopathies.


Author(s):  
J. Eric Ahlskog

Most of the research into the cause of Lewy disorders has focused on Parkinson’s disease, since that is the best defined of these conditions and, therefore, the most straightforward to study. Dementia with Lewy bodies (DLB) is more difficult to diagnose with certainty, especially in the early years of the disease. What we collectively learn about Parkinson’s disease will likely be very relevant to our understanding of DLB. Multiple investigations have linked Parkinson’s disease to both environmental exposures and genetic factors. However, these associations have all been modest, and none of them accounts for more than a few percent of the contribution to the cause of sporadic Parkinson’s disease (i.e., the attributable risks are low). These investigations are ongoing and hopefully will soon provide a more complete understanding of the cause(s). Perhaps the most important clue to all Lewy conditions is located in the brain: the Lewy body itself. A recent sophisticated analysis of Lewy bodies revealed approximately 300 different component proteins. However, we already knew that Lewy bodies contain high concentrations of a normal protein called alpha synuclein. In fact, Lewy bodies are conventionally identified under the microscope with antibody stains that specifically bind to alpha synuclein. Could this be the crucial protein among the nearly 300? While the alpha synuclein story is focused on Parkinson’s disease, it may be just as relevant to DLB, as we shall see. The story starts with a large Italian-American family with Parkinson’s disease, studied by Dr. Lawrence Golbe and colleagues at the Robert Wood Johnson Medical Center in New Brunswick, New Jersey. In this rare family, many members of multiple generations had been affected by Parkinson’s disease (with Lewy bodies), consistent with a single gene passed on with dominant inheritance. It took a number of years to identify that abnormal gene, which ultimately was proven to be the gene coding for alpha synuclein. It was quickly discovered that this genetic error is not present in usual cases of Parkinson’s disease.


Cells ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 2289 ◽  
Author(s):  
Sanjanie Fernando ◽  
Claire Y. Allan ◽  
Katelyn Mroczek ◽  
Xavier Pearce ◽  
Oana Sanislav ◽  
...  

Alpha synuclein has been linked to both sporadic and familial forms of Parkinson’s disease (PD) and is the most abundant protein in Lewy bodies a hallmark of Parkinson’s disease. The function of this protein and the molecular mechanisms underlying its toxicity are still unclear, but many studies have suggested that the mechanism of α-synuclein toxicity involves alterations to mitochondrial function. Here we expressed human α-synuclein and two PD-causing α-synuclein mutant proteins (with a point mutation, A53T, and a C-terminal 20 amino acid truncation) in the eukaryotic model Dictyostelium discoideum. Mitochondrial disease has been well studied in D. discoideum and, unlike in mammals, mitochondrial dysfunction results in a clear set of defective phenotypes. These defective phenotypes are caused by the chronic hyperactivation of the cellular energy sensor, AMP-activated protein kinase (AMPK). Expression of α-synuclein wild type and mutant forms was toxic to the cells and mitochondrial function was dysregulated. Some but not all of the defective phenotypes could be rescued by down regulation of AMPK revealing both AMPK-dependent and -independent mechanisms. Importantly, we also show that the C-terminus of α-synuclein is required and sufficient for the localisation of the protein to the cell cortex in D. discoideum.


2016 ◽  
Vol 2016 ◽  
pp. 1-14 ◽  
Author(s):  
Peng Wang ◽  
Xin Li ◽  
Xuran Li ◽  
Weiwei Yang ◽  
Shun Yu

A pathological hallmark of Parkinson’s disease (PD) is formation of Lewy bodies in neurons of the brain. This has been attributed to the spread of α-synuclein (α-syn) aggregates, which involves release of α-syn from a neuron and its reuptake by a neighboring neuron. We found that treatment with plasma from PD patients induced more α-syn phosphorylation and oligomerization than plasma from normal subjects (NS). Compared with NS plasma, PD plasma added to primary neuron cultures caused more cell death in the presence of extracellular α-syn. This was supported by the observations that phosphorylated α-syn oligomers entered neurons, rapidly increased accumulated thioflavin S-positive inclusions, and induced a series of metabolic changes that included activation of polo-like kinase 2, inhibition of glucocerebrosidase and protein phosphatase 2A, and reduction of ceramide levels, all of which have been shown to promote α-syn phosphorylation and aggregation. We also analyzed neurotoxicity of α-syn oligomers relative to plasma from different patients. Neurotoxicity was not related to age or gender of the patients. However, neurotoxicity was positively correlated with H&Y staging score. The modification in the plasma may promote spreading of α-syn aggregates via an alternative pathway and accelerate progression of PD.


Sign in / Sign up

Export Citation Format

Share Document