Perinatal inflammation and gestational intermittent hypoxia disturbs respiratory rhythm generation and long-term facilitation in vitro: partial protection by acute minocycline

Author(s):  
Polet Camacho-Hernández ◽  
Jonathan Julio Lorea-Hernández ◽  
Laura Pinedo-Vargas ◽  
Fernando Peña-Ortega
2007 ◽  
Vol 293 (2) ◽  
pp. R901-R910 ◽  
Author(s):  
Stephen M. Johnson ◽  
Liana M. Wiegel ◽  
David J. Majewski

The role of pacemaker properties in vertebrate respiratory rhythm generation is not well understood. To address this question from a comparative perspective, brain stems from adult turtles were isolated in vitro, and respiratory motor bursts were recorded on hypoglossal (XII) nerve rootlets. The goal was to test whether burst frequency could be altered by conditions known to alter respiratory pacemaker neuron activity in mammals (e.g., increased bath KCl or blockade of specific inward currents). While bathed in artificial cerebrospinal fluid (aCSF), respiratory burst frequency was not correlated with changes in bath KCl (0.5–10.0 mM). Riluzole (50 μM; persistent Na+ channel blocker) increased burst frequency by 31 ± 5% ( P < 0.05) and decreased burst amplitude by 42 ± 4% ( P < 0.05). In contrast, flufenamic acid (FFA, 20–500 μM; Ca2+-activated cation channel blocker) reduced and abolished burst frequency in a dose- and time-dependent manner ( P < 0.05). During synaptic inhibition blockade with bicuculline (50 μM; GABAA channel blocker) and strychnine (50 μM; glycine receptor blocker), rhythmic motor activity persisted, and burst frequency was directly correlated with extracellular KCl (0.5–10.0 mM; P = 0.005). During synaptic inhibition blockade, riluzole (50 μM) did not alter burst frequency, whereas FFA (100 μM) abolished burst frequency ( P < 0.05). These data are most consistent with the hypothesis that turtle respiratory rhythm generation requires Ca2+-activated cation channels but not pacemaker neurons, which thereby favors the group-pacemaker model. During synaptic inhibition blockade, however, the rhythm generator appears to be transformed into a pacemaker-driven network that requires Ca2+-activated cation channels.


2010 ◽  
Vol 30 (12) ◽  
pp. 4273-4284 ◽  
Author(s):  
H. Koizumi ◽  
S. E. Smerin ◽  
T. Yamanishi ◽  
B. R. Moorjani ◽  
R. Zhang ◽  
...  

2005 ◽  
Vol 288 (6) ◽  
pp. R1571-R1580 ◽  
Author(s):  
Kevin J. Cummings ◽  
Richard J. A. Wilson

The ventilatory response to several minutes of hypoxia consists of various time-dependent phenomena, some of which occur during hypoxia (e.g., short-term depression), whereas others appear on return to normoxia (e.g., posthypoxic frequency decline). Additional phenomena can be elicited by acute, intermittent hypoxia (e.g., progressive augmentation, long-term facilitation). Current data suggest that these phenomena originate centrally. We tested the hypothesis that carotid body afferent activity undergoes time-dependent modulation, consistent with a direct role in these ventilatory phenomena. Using an in vitro rat carotid body preparation, we found that 1) afferent activity declined during the first 5 min of severe (40 Torr Po2), moderate (60 Torr Po2), or mild (80 Torr Po2) hypoxia; 2) after return to normoxia (100 Torr Po2) and after several minutes of moderate or severe hypoxia, afferent activity was transiently reduced compared with prehypoxic levels; and 3) with successive 5-min bouts of mild, moderate, or severe hypoxia, afferent activity during bouts increased progressively. We call these phenomena sensory hypoxic decline, sensory posthypoxic decline, and sensory progressive augmentation, respectively. These phenomena were stimulus specific: similar phenomena were not seen with 5-min bouts of normoxic hypercapnia (100 Torr Po2 and 50–60 Torr Pco2) or hypoxic hypocapnia (60 Torr Po2 and 30 Torr Pco2). However, bouts of either normoxic hypercapnia or hypocapnic hypoxia resulted in sensory long-term facilitation. We suggest time-dependent carotid body activity acts in parallel with central mechanisms to shape the dynamics of ventilatory responses to respiratory chemostimuli.


Author(s):  
Christopher Fietkiewicz ◽  
Geoffrey O. Shafer ◽  
Ethan A. Platt ◽  
Christopher G. Wilson

2002 ◽  
Vol 131 (1-2) ◽  
pp. 43-56 ◽  
Author(s):  
Jan-Marino Ramirez ◽  
Edward J Zuperku ◽  
George F Alheid ◽  
Steven P Lieske ◽  
Krzysztof Ptak ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document