Time-dependent modulation of carotid body afferent activity during and after intermittent hypoxia

2005 ◽  
Vol 288 (6) ◽  
pp. R1571-R1580 ◽  
Author(s):  
Kevin J. Cummings ◽  
Richard J. A. Wilson

The ventilatory response to several minutes of hypoxia consists of various time-dependent phenomena, some of which occur during hypoxia (e.g., short-term depression), whereas others appear on return to normoxia (e.g., posthypoxic frequency decline). Additional phenomena can be elicited by acute, intermittent hypoxia (e.g., progressive augmentation, long-term facilitation). Current data suggest that these phenomena originate centrally. We tested the hypothesis that carotid body afferent activity undergoes time-dependent modulation, consistent with a direct role in these ventilatory phenomena. Using an in vitro rat carotid body preparation, we found that 1) afferent activity declined during the first 5 min of severe (40 Torr Po2), moderate (60 Torr Po2), or mild (80 Torr Po2) hypoxia; 2) after return to normoxia (100 Torr Po2) and after several minutes of moderate or severe hypoxia, afferent activity was transiently reduced compared with prehypoxic levels; and 3) with successive 5-min bouts of mild, moderate, or severe hypoxia, afferent activity during bouts increased progressively. We call these phenomena sensory hypoxic decline, sensory posthypoxic decline, and sensory progressive augmentation, respectively. These phenomena were stimulus specific: similar phenomena were not seen with 5-min bouts of normoxic hypercapnia (100 Torr Po2 and 50–60 Torr Pco2) or hypoxic hypocapnia (60 Torr Po2 and 30 Torr Pco2). However, bouts of either normoxic hypercapnia or hypocapnic hypoxia resulted in sensory long-term facilitation. We suggest time-dependent carotid body activity acts in parallel with central mechanisms to shape the dynamics of ventilatory responses to respiratory chemostimuli.

2003 ◽  
Vol 95 (6) ◽  
pp. 2614-2623 ◽  
Author(s):  
A. G. Zabka ◽  
G. S. Mitchell ◽  
E. B. Olson ◽  
M. Behan

Age and the estrus cycle affect time-dependent respiratory responses to episodic hypoxia in female rats. Respiratory long-term facilitation (LTF) is enhanced in middle-aged vs. young female rats ( 72 ). We tested the hypothesis that phrenic and hypoglossal (XII) LTF are diminished in acyclic geriatric rats when fluctuating sex hormone levels no longer establish conditions that enhance LTF. Chronic intermittent hypoxia (CIH) enhances LTF ( 41 ); thus we further predicted that CIH would restore LTF in geriatric female rats. LTF was measured in young (3-4 mo) and geriatric (20-22 mo) female Sasco Sprague-Dawley rats and in a group of geriatric rats exposed to 1 wk of nocturnal CIH (11 vs. 21% O2 at 5-min intervals, 12 h/night). In anesthetized, paralyzed, vagotomized, and ventilated rats, time-dependent hypoxic phrenic and XII responses were assessed. The short-term hypoxic response was measured during the first of three 5-min episodes of isocapnic hypoxia (arterial Po2 35-45 Torr). LTF was assessed 15, 30, and 60 min postepisodic hypoxia. Phrenic and XII short-term hypoxic response was not different among groups, regardless of CIH treatment ( P > 0.05). LTF in geriatric female rats was smaller than previously reported for middle-aged rats but comparable to that in young female rats. CIH augmented phrenic and XII LTF to levels similar to those of middle-aged female rats without CIH ( P < 0.05). The magnitude of phrenic and XII LTF in all groups was inversely related to the ratio of progesterone to estradiol serum levels ( P < 0.05). Thus CIH and sex hormones influence the magnitude of LTF in geriatric female rats.


2003 ◽  
Vol 100 (17) ◽  
pp. 10073-10078 ◽  
Author(s):  
Y.-J. Peng ◽  
J. L. Overholt ◽  
D. Kline ◽  
G. K. Kumar ◽  
N. R. Prabhakar

2001 ◽  
Vol 281 (3) ◽  
pp. L524-L528 ◽  
Author(s):  
Nanduri R. Prabhakar ◽  
R. Douglas Fields ◽  
Tracy Baker ◽  
Eugene C. Fletcher

This symposium was organized to present research dealing with the effects of intermittent hypoxia on cardiorespiratory systems and cellular mechanisms. The pattern of neural impulse activity has been shown to be critical in the induction of genes in neuronal cells and involves distinct signaling pathways. Mechanisms associated with different patterns of intermittent hypoxia might share similar mechanisms. Chronic intermittent hypoxia selectively augments carotid body sensitivity to hypoxia and causes long-lasting activation of sensory discharge. Intermittent hypoxia also activates hypoxia-inducible factor-1. Reactive oxygen species are critical in altering carotid body function and hypoxia-inducible factor-1 activation caused by intermittent hypoxia. Blockade of serotonin function in the spinal cord prevents long-term facilitation in respiratory motor output elicited by episodic hypoxia and requires de novo protein synthesis. Chronic intermittent hypoxia leads to sustained elevation in arterial blood pressure and is associated with upregulation of catecholaminergic and renin-angiotensin systems and downregulation of nitric oxide synthases.


2020 ◽  
Vol 128 (5) ◽  
pp. 1329-1337
Author(s):  
Caroline G. Shimoura ◽  
Mary Ann Andrade ◽  
Glenn M. Toney

Acute intermittent hypoxia (AIH) triggers sympathetic long-term facilitation (sLTF) that relies on peripheral renin-angiotensin system (RAS) activation. Here, increasing AIH cycles from 5 to 10 proportionally increased RAS activity, but not the magnitude of post-AIH sLTF. Brain angiotensin II (ANG II) receptor blockade and nephrectomy each largely prevented sLTF, whereas central ANG II rescued it following nephrectomy. Peripheral RAS activation by AIH induces time-dependent neuroplasticity at an apparent central ANG II signaling threshold, triggering a stereotyped sLTF response.


2021 ◽  
Vol 125 (4) ◽  
pp. 1146-1156
Author(s):  
Nicole L. Nichols ◽  
Gordon S. Mitchell

Distinct mechanisms give rise to pLTF induced by moderate and severe AIH. We demonstrate that, unlike moderate AIH, severe AIH-induced pLTF requires EPAC and PI3K/Akt and is marginally constrained by NADPH oxidase activity. Surprisingly, sAIH-induced pLTF requires MEK/ERK activity similar to moderate AIH-induced pLTF and is reduced by PKA inhibition. We suggest sAIH-induced pLTF arises from complex interactions between dominant mechanisms characteristic of moderate versus severe AIH-induced pLTF.


Sign in / Sign up

Export Citation Format

Share Document