Statistical models for the analysis of water distribution system pipe break data

2009 ◽  
Vol 94 (2) ◽  
pp. 282-293 ◽  
Author(s):  
Shridhar Yamijala ◽  
Seth D. Guikema ◽  
Kelly Brumbelow
2020 ◽  
Vol 2020 ◽  
pp. 1-6
Author(s):  
Jasem M. Alhumoud ◽  
Nourah Almashan

The Ministry of Electricity and Water (MEW), as well as other water authorities all over the world, is facing a difficult challenge in assessing the physical condition of its distribution systems. Since the majority of the mains are buried, the MEW must rely upon indirect methods, including analysis of repair records. A case study on Kuwait’s water distribution system using the techniques of survival analysis is analyzed and investigated for modeling the pipe break failures. The proportional hazard model has the advantage of being able to separate the effects of component deterioration on failure due to aging from the effects of site-specific causes. Another desirable feature is its ability to analyze censored data. The sensitivity of the model parameters to sample size and percent censoring is examined through random sampling of the database. In addition, the proportional hazard model is suitable for describing failure rates of components.


2008 ◽  
Vol 8 (4) ◽  
pp. 421-426
Author(s):  
J. Menaia ◽  
M. Benoliel ◽  
A. Lopes ◽  
C. Neto ◽  
E. Ferreira ◽  
...  

Concerns arise from the possible occurrence of pathogens in drinking water pipe biofilms and storage tank sediments. In these studies, biofilm samples from pipes and sediments from storage tanks of the Lisbon drinking water distribution system were analyzed. Protein determinations and heterotrophic counts on pipe biofilm samples were used to assess the Lisbon network sessile colonization intensity and distribution. Indicator and pathogenic microorganisms were analyzed in pipe biofilm samples, as well as in storage tanks biofilm and sediments, by using cultural methods and PCR, to assess risks. Results have shown that the Lisbon network sessile colonization is relatively weak in intensity. In addition, no meaningful hazards were apparent for both the network biofilm and the storage tanks biofilm and sediments.


Sign in / Sign up

Export Citation Format

Share Document