scholarly journals Anisotropic properties of 3-D printed Poly Lactic Acid (PLA) and Acrylonitrile Butadiene Styrene (ABS) plastics

2021 ◽  
pp. 100227
Author(s):  
Aneurin Grant ◽  
Bradley Regez ◽  
Salih Kocak ◽  
Joshua D. Huber ◽  
Adam Mooers
2020 ◽  
Vol 69 (9) ◽  
pp. 794-803
Author(s):  
Tobias Abt ◽  
Mohammad Reza Kamrani ◽  
Jonathan Cailloux ◽  
Orlando Santana ◽  
Miguel Sánchez‐Soto

2020 ◽  
Vol 20 (2) ◽  
pp. 276 ◽  
Author(s):  
Mohd Bijarimi ◽  
Noor Shahadah ◽  
Azizan Ramli ◽  
Said Nurdin ◽  
Waleed Alhadadi ◽  
...  

A melt blending of poly(lactic acid) (PLA)/acrylonitrile-butadiene-styrene (ABS) with 30:70 PLA:ABS was prepared by a twin screw extruder with a die of 25 mm width and 0.5 mm thickness with various loadings of graphene (0–1.0 wt.%). The PLA/ABS blends were evaluated by mechanical, morphology, thermal and interaction of the components of the blend. Results show the incorporation of graphene nanoplatelet (GNP) improved the tensile and modulus properties. Nevertheless, it was observed that at higher GNP loadings i.e. 0.6–1.0 wt.%, both tensile and modulus properties showed a decreasing trend. It was also found that the thermal stability for the blend slightly improved when graphene presence in the blend.


Polymers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 2797
Author(s):  
Jure Žigon ◽  
Mirko Kariž ◽  
Matjaž Pavlič

Surface treatment of 3D-printed objects with coatings, besides protection against environmental influences, offers the improvement of visual appearance of the printed elements. In order to design an optimum surface system, the physical and chemical properties of polymers surfaces should be well-known. In the present study, 3D-printed samples of acrylonitrile-butadiene-styrene, poly(lactic acid) and poly(lactic acid) with wood flour additive were coated with three different types of coating, namely solvent borne alkyd coating, water borne acrylic coating and coating made of acrylonitrile-butadiene-styrene diluted in acetone. The surface properties of substrates and the properties of surface systems were assessed with different methods. The results revealed the surfaces of polymers having hydrophobic character, whereas the color, gloss, surface roughness and coating film thickness of coated surfaces depend on the characteristics of particular coatings. Finally, the adhesion of coatings was shown to be appropriate, but dependent on substrate surface porosity and chemical properties of both substrate surface and coating asset.


Sign in / Sign up

Export Citation Format

Share Document