poly acrylonitrile
Recently Published Documents


TOTAL DOCUMENTS

898
(FIVE YEARS 139)

H-INDEX

52
(FIVE YEARS 7)

2022 ◽  
Author(s):  
Zhujun Huang ◽  
Dongying Zhu ◽  
Haiyan Wang ◽  
Jinhua Luo ◽  
Chenxi Zhao ◽  
...  

Developing excellent photocatalysts for pollutant degradation is of vital significance but still a big challenge. In this work, the electrospun g-C3N4/Bi12O17Cl2/poly(acrylonitrile-co-maleic acid) (E-spun g-C3N4/Bi12O17Cl2/PANCMA) nanofibers photocatalyst was fabricated by coaxial...


Polymers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 42
Author(s):  
Hyelim Kim ◽  
Ji-Su Kim ◽  
Wonyoung Jeong

Antimony oxide (ATO) is used mainly as a flame retardant, but it is classified as a hazardous substance. Therefore, regulations on the use of antimony trioxide (ATO(3)) and antimony pentoxide (ATO(5)) in textile products are being developed. Accordingly, there is a need for alternative flame retardants. In this study, antimony tetroxide (ATO(4)), which has higher thermal stability and resistance to acids and alkalis than ATO(3) or ATO(5), was selected to assess its use as an alternative flame retardant. First, ATO(3) or ATO(4) were added to poly(acrylonitrile-co-vinylidene chloride) (PANVDC), and the film and wet-spun fiber were prepared. The PANVDC film with flame retardants was prepared to evaluate the flame retardancy and the mechanism of action of the flame retardants. Flame retardancy analysis showed that a limiting oxygen index of 31.2% was obtained when ATO(4) was added, which was higher than when ATO(3) was used. Subsequently, PANVDC fibers with antimony oxide were manufactured and showed improved mechanical and thermal properties when ATO(4) was used, compared to when ATO(3) was tested. In addition, migration analysis due to antimony in the fiber confirmed that the elution amount was below the acceptable standard when PANVDC fibers with ATO(4) were added. Therefore, based on these results, the flame-retardant and thermal properties of antimony tetroxide were superior to antimony trioxide, and it was confirmed that ATO(4) could be used as an alternative flame retardant to ATO(3).


Author(s):  
Janina Trueck ◽  
Peiwen Wang ◽  
Elizaveta Buch ◽  
Jonas Groos ◽  
Stefan Niesen ◽  
...  

Abstract Spinel lithium-titanate Li4Ti5O12 (LTO) is a promising anode material for magnesium batteries due to its non-toxicity, low-cost, zero-strain characteristics and long-term stability. Nevertheless, the application of LTO in a magnesium full cell has been rarely investigated. Herein, we give a proof of concept for the feasibility of LTO as anode in full magnesium ion batteries, which might prevent the passivation of metallic Mg anodes. Mg2+ was electrochemically inserted into LTO prior to cycling against a sulfur-based cathode material, i.e. sulfurated poly(acrylonitrile), SPAN, resulting in stable cycle performance with 800 mAh/gS at 0.3C and high-rate capability.


Author(s):  
Tomasz Blachowicz ◽  
Michal Koruszowic

Topothesy and fractal dimensions were calculated for poly(acrylonitrile) (PAN) nanofibers mats obtained by electrospinning. These methods enable quantitatively describing and thus comparing solid-state surfaces and detecting fabric errors. The obtained variety of structural properties results from different substrates and after-treatments, e.g. stabilization and carbonization. The change in spatial morphology was reported for different magnification of images obtained with the use of Helium Ion Microscopy (HIM).


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Ely Cheikh S’Id ◽  
Mohamed Degué ◽  
Chlouma Khalifa ◽  
Chamekh M’Bareck

Abstract The current investigation is focused on the removal of crystal violet (CV) from water by adsorption process (bach method). To achieve this purpose, specific membranes were prepared from poly acrylonitrile-co-sodium methallyl sulfonate (AN69) and poly acrylic acid (PAA) blends. The adsorption of CV onto AN69/PAA membranes was studied under various conditions: membrane composition, pH, contact time, initial concentration and temperature. To understand the effect of membrane morphology on adsorption process, scanning electronic microscopy (SEM) was employed to determine the features of section and membrane’s surface. From isotherm results, it was found that: the maximum adsorption capacity Q m was 1250 mg g−1, the Langmuir separation factor R L was lying between 0.33 and 0.76, the Freundlich intensity was higher than Unit (n = 1.25) and the adsorption process follows preferentially the Langmuir model (correlation constant R 2 = 0.99). The mechanism of adsorption is perfectly fitted by pseudo second order. The obtained results tend to confirm that the removal of dye molecules is due to the establishment of strong electrostatic interactions between cationic dye molecules and anionic membrane groups. The high adsorption capacity (1250 mg g−1) for the small dye molecules may open wide opportunities to apply these membranes in the removal of various hazardous pollutants commonly present in water.


2021 ◽  
Vol 515 ◽  
pp. 230604
Author(s):  
Peiwen Wang ◽  
Kathrin Küster ◽  
Ulrich Starke ◽  
Chen Liang ◽  
Rainer Niewa ◽  
...  

Polymers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 4197
Author(s):  
Elisa Maruccia ◽  
Stefania Ferrari ◽  
Mattia Bartoli ◽  
Lorenzo Lucherini ◽  
Giuseppina Meligrana ◽  
...  

Carbon capture is amongst the key emerging technologies for the mitigation of greenhouse gases (GHG) pollution. Several materials as adsorbents for CO2 and other gases are being developed, which often involve using complex and expensive fabrication techniques. In this work, we suggest a sound, easy and cheap route for the production of nitrogen-doped carbon materials for CO2 capture by pyrolysis of electrospun poly(acrylonitrile) (PAN) fibers. PAN fibers are generally processed following specific heat treatments involving up to three steps (to get complete graphitization), one of these being stabilization, during which PAN fibers are oxidized and stretched in the 200–300 °C temperature range. The effect of stabilization temperature on the chemical structure of the carbon nanofibers is investigated herein to ascertain the possible implication of incomplete conversion/condensation of nitrile groups to form pyridine moieties on the CO2 adsorption capacity. The materials were tested in the pure CO2 atmosphere at 20 °C achieving 18.3% of maximum weight increase (equivalent to an uptake of 4.16 mmol g−1), proving the effectiveness of a high stabilization temperature as route for the improvement of CO2 uptake.


Polymers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 3862
Author(s):  
Shuxian Zhang ◽  
Yanjin Dang ◽  
Xuepeng Ni ◽  
Chunshun Yuan ◽  
Huifang Chen ◽  
...  

Bifunctional comonomer 2-methylenesuccinamic acid (MLA) was designed and synthesized to prepare acrylonitrile copolymer P (AN-co-MLA) using mixed solvent polymerization as a carbon fiber precursor. The effect of monomer feed ratios on the structure and stabilization were characterized by elemental analysis (EA), Fourier transform infrared spectroscopy (FTIR), gel permeation chromatography (GPC), X-ray diffraction (XRD), proton nuclear magnetic (1H NMR), and differential scanning calorimetry (DSC) for the P (AN-co-MLA) copolymers. The results indicated that both the conversion and molecular weight of polymerization reduce gradually when the MLA content is increased in the feed and that bifunctional comonomer MLA possesses a larger reactivity ratio than acrylonitrile (AN). P (AN-co-MLA) shows improved stabilization compared to the PAN homopolymer and poly (acrylonitrile-acrylic acid-methacrylic acid) [P (AN-AA-MA)], showing features such as lower initiation temperature, smaller cyclic activation energy, wider exothermic peak, and a larger stabilization degree, which are due to the ionic cyclization reaction initiated by MLA, confirming that the as-prepared P (AN-co-MLA) is the potential precursor for high-performance carbon fiber.


Sign in / Sign up

Export Citation Format

Share Document