and chemical properties
Recently Published Documents


TOTAL DOCUMENTS

6872
(FIVE YEARS 1695)

H-INDEX

113
(FIVE YEARS 14)

2022 ◽  
Vol 372 ◽  
pp. 131174
Author(s):  
Suzane Rickes da Luz ◽  
Franciene Almeida Villanova ◽  
Caroline Tuchtenhagen Rockembach ◽  
Cristiano Dietrich Ferreira ◽  
Leandro José Dallagnol ◽  
...  

2022 ◽  
Vol 12 (3) ◽  
pp. 471-479
Author(s):  
Aqsa Khan ◽  
Ghazna Hassan Khan ◽  
Eraj Humayun Mirza ◽  
Alidad Chandio ◽  
Maliha Mohsin ◽  
...  

Bone tissue engineering has emerged as a multidisciplinary field in recent times with an aim to expedite the process of regeneration of damaged or diseased tissues. This study is an attempt to fabricate and characterize Tricalcium Phosphate (TCP) and Chitosan incorporated Polymethylmethacrylate (PMMA) based bone cement. In total two experimental PMMA based bone cements were fabricated that were differentiated by presence and absence of Chitosan. In both groups (10 and 30 wt.%) TCP were incorporated into Methyl methacrylate (MMA) monomer. PMMA was used as a control. The physical, mechanical and thermal properties of the composites were assessed. Morphological changes of PMMA after the introduction of TCP and Chitosan were observed by means of X-ray diffraction (XRD). Major peak shifts in Fourier transform Infrared spectroscopy (FTIR) spectra demonstrated the strong bonding of PMMA with incorporated materials. PMMA incorporated with 10% TCP showed the maximum wettability in absence of Chitosan. Hardness of the tested specimens decreased with increasing content of TCP which in turns enhanced ductility. It was also observed that neither of the samples showed significant degradation. The incorporation of additives enhance the physical and chemical properties of PMMA as bone cement.


Author(s):  
Yaoben Lin ◽  
Yanmei Ye ◽  
Shuchang Liu ◽  
Jiahao Wen ◽  
Danling Chen

Farmland consolidation is an effective tool to improve farmland infrastructures, soil quality, and sustain a healthy farmland ecosystem and rural population, generating contributions to food security and regional sustainable development. Previous studies showed that farmland consolidation regulates soil physical and chemical properties. Soil microorganisms also play an important role in soil health and crop performance; however, few studies reported how farmland consolidation influence soil microecology. Here, we used DNA sequencing technology to compare bacterial community structure in farmlands with and without consolidation. DNA sequencing technology is the most advanced technology used to obtain biological information in the world, and it has been widely used in the research of soil micro-ecological environment. In September 2018, we collected soil samples in Jiashan County, Zhejiang Province, China, and used DNA sequence technology to compare the bacterial community structure in farmlands with and without consolidation. Our results found that (1) farmland consolidation had significant impacts on soil microbial characteristics, which were mainly manifested as changes in microbial biomass, microbial diversity and community structure. Farmland consolidation can increase the relative abundance of the three dominant bacteria phyla and the three fungal dominant phyla, but it also negatively affects the relative abundance of the six dominant bacteria phyla and the three fungal dominant phyla. (2) Farmland consolidation had an indirect impact on soil bacterial community structure by adjusting the soil physical and chemical properties. (3) The impact of heavy metals on bacterial community structure varied significantly under different levels of heavy metal pollution in farmland consolidation areas. There were 6, 3, 3, and 5 bacterial genera that had significant correlations with heavy metal content in cultivated land with low pollution, light pollution, medium pollution, and heavy pollution, respectively. The number of heavy metal-tolerant bacteria in the soil generally increased first and then decreased under heavy metal polluted conditions. Our study untangled the relationship between varied farmland consolidation strategies and bacteria through soil physcicochemical properties and metal pollution conditions. Our results can guide farmland consolidation strategies and sustain soil health and ecological balance in agriculture.


Atmosphere ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 129
Author(s):  
Ziwei Yang ◽  
Kelong Chen ◽  
Fumei Liu ◽  
Zihan Che

Niaodao, a lakeside wetland, was used as the focus of this study to investigate the effect of rainfall changes on the greenhouse gas fluxes of wetland ecosystems. Wetland plots with different moisture characteristics (+25%, −25%, +75%, and −75% rainfall treatments and the control treatment (CK)) were constructed to observe in situ field greenhouse gas emissions at 11:00 and 15:00 (when the daily mean values were similar) in the growing season from May to August 2020 by static chamber–gas chromatography and to investigate the responses of wetland greenhouse gases to different rainfall treatments. The results showed the following: (1) The carbon dioxide (CO2) flux ranged from −49.409 to 374.548 mg·m−2·h−1. The mean CO2 emission flux was greater at 11:00 than at 15:00, and the +25% and +75% treatments exhibited substantially higher CO2 emissions. In addition, the CO2 flux showed a small peak at the beginning of the growing season when the temperature first started to rise. All treatments showed the effect of the CO2 source, and their effects were significantly different. (2) The methane (CH4) flux ranged from −213.839 to 330.976 µg·m−2·h−1 and exhibited an absorption state at 11:00 and an emission state at 15:00. The CH4 emission flux in August (the peak growing season) differed greatly between treatments and was significantly negatively correlated with the rainfall amount (p < 0.05). (3) The nitrous oxide (N2O) flux ranged from −10.457 to 16.878 µg·m−2·h−1 and exhibited a weak source effect throughout the growing season, but it was not significantly correlated with soil moisture; it was, however, negatively correlated with soil temperature. (4) The different treatments resulted in significant differences in soil physical and chemical properties (electrical conductivity, pH, total soil carbon, and total soil nitrogen). The rainfall enhancement treatments significantly improved soil physical and chemical properties.


Galaxies ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 11
Author(s):  
Christian Henkel ◽  
Leslie K. Hunt ◽  
Yuri I. Izotov

Dwarf galaxies are by far the most numerous galaxies in the Universe, showing properties that are quite different from those of their larger and more luminous cousins. This review focuses on the physical and chemical properties of the interstellar medium of those dwarfs that are known to host significant amounts of gas and dust. The neutral and ionized gas components and the impact of the dust will be discussed, as well as first indications for the existence of active nuclei in these sources. Cosmological implications are also addressed, considering the primordial helium abundance and the similarity of local Green Pea galaxies with young, sometimes protogalactic sources in the early Universe.


2022 ◽  
Vol 1049 ◽  
pp. 257-265
Author(s):  
Pavel Borisovich Razgovorov ◽  
Аleksey A. Ignatiev ◽  
Valeriy Michailovich Gotovtsev ◽  
Elena Aleksandrovna Vlasova

The paper discusses the change of phosphogypsum surface state produced by Apatit (Cherepovetsky branch, Vologda region) during calcination at 298-1173 K. The authors have determined the average size of its crystallites and studied the atomic composition of raw materials and finished composites that include crushed rock fraction (5-10 mm), oil bitumen, and polyethylene terephthalate additive (1.0-1.2 wt. %). The compounds present in calcined phosphogypsum have been analyzed by X-ray diffraction. The granulate was obtained by pelletizing phosphogypsum with a mixture of the above components. The paper presents the assessment of its physical and chemical properties. The granulated composites based on the specified samples of calcined phosphogypsum, bitumen, and melted polyethylene terephthalate waste show great promise for construction road works in European countries in summer and winter, as well as countries with tropical climates.


Water ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 185
Author(s):  
Vladimir Mukhanov ◽  
Evgeny Sakhon ◽  
Alexander Polukhin ◽  
Vladimir Artemiev ◽  
Eugene Morozov ◽  
...  

A remarkable shift in the species composition and size distribution of the phytoplankton community have been observed in coastal waters along the Antarctic Peninsula over the last three decades. Smaller photoautotrophs such as cryptophytes are becoming more abundant and important for the regional ecosystems. In this study, flow cytometry was used to quantify the smallest phytoplankton in the central Bransfield Strait and explore their distribution across the strait in relation to physical and chemical properties of the two major water masses: the warmer and less saline Transitional Zonal Water with Bellingshausen Sea influence (TBW), and the cold and salty Transitional Zonal Water with Weddell Sea influence (TWW). Pico- and nano-phytoplankton clusters were distinguished and enumerated in the cytograms: photosynthetic picoeukaryotes, cryptophytes (about 9 µm in size), and smaller (3 µm) nanophytoplankton. It was shown that nanophytoplankton developed higher abundances and biomasses in the warmer and less saline TBW. This biotope was characterized by a more diverse community with a pronounced dominance of Cryptophyta in terms of biomass. The results support the hypothesis that increasing melt-water input can potentially support spatial and temporal extent of cryptophytes. The replacement of large diatoms with small cryptophytes leads to a significant shift in trophic processes in favor of the consumers such as salps, which able to graze on smaller prey.


Author(s):  
Mina Habibiasr ◽  
Mohd Noriznan Mokhtar ◽  
Mohd Nordin Ibrahim ◽  
Khairul Faezah Md Yunos ◽  
Nuzul Amri Ibrahim

Sign in / Sign up

Export Citation Format

Share Document