scholarly journals Optimum surface roughness prediction for titanium alloy by adopting response surface methodology

2017 ◽  
Vol 7 ◽  
pp. 1046-1050 ◽  
Author(s):  
Aimin Yang ◽  
Yang Han ◽  
Yuhang Pan ◽  
Hongwei Xing ◽  
Jinze Li
2021 ◽  
Author(s):  
Umanath Karuppusamy ◽  
Devika D ◽  
Rashia Begum S

Abstract In the current study, the research explored the effect of the process parameters on the Titanium Alloy (Ti–6Al–4V) to improve the machining, surface and geometric characteristics of the circular cut-off profile by determining the optimum parameters for the Abrasive Water Jet Machining (AWJM). The input parameters considered are the Abrasive Flow Rate (AFR), Stand-off Distance (SoD), and Traverse Rate (TR). There are various input parameters to evaluate output parameters like Circularity, Cylindricity, and Surface Roughness (SR) of the circular cut profile. The experiments are conducted using Central Composite Design (CCD) in the Response Surface Methodology (RSM). Analysis of variance (ANOVA) is carried out to define most influenced process parameters and percentage of contribution. The RSM is used to predict the mathematical models for formulating the objective function using experimental results. RSM desirability approach is included in the method for determining optimum levels and discerning impacts on response variables of machining parameters. Confirmation tests with an optimum level of machining parameters have been completed to determine the adequacy of the RSM. In addition to that, the cutting profiles are also analysed using Scanning Electron Microscope (SEM). The Atomic Force Microscope(AFM) is often used to verify the minimum Surface Roughness of the AWJM machined surface.


2014 ◽  
Vol 541-542 ◽  
pp. 354-358 ◽  
Author(s):  
C. Nandakumar ◽  
B. Mohan

This research deals with the multi-response optimization of CNC WEDM process parameters for machining titanium alloy Ti 6AI-4V using Response Surface Methodology (RSM) to achieve higher Material Removal Rate (MRR) and lower surface roughness (Ra). The process parameters of CNC WEDM namely pulse-on time (TON), pulse-off time (TOFF) and wire feed rate (WF) were optimized to study the responses in terms of material removal rate and surface roughness. The surface plot and the contour plots were generated between the process parameters and the responses using MINITAB software. The results show that the Response surface methodology (RSM) is a powerful tool for providing experimental diagrams and statistical-mathematical models to perform the experiments appropriately and economically.


Sign in / Sign up

Export Citation Format

Share Document