Analysis of Sentinel-3 SAR altimetry waveform retracking algorithms for deriving temporally consistent water levels over ice-covered lakes

2020 ◽  
Vol 239 ◽  
pp. 111643 ◽  
Author(s):  
Song Shu ◽  
Hongxing Liu ◽  
Richard A. Beck ◽  
Frédéric Frappart ◽  
Johanna Korhonen ◽  
...  
2015 ◽  
Vol 19 (1) ◽  
pp. 341-359 ◽  
Author(s):  
Y. B. Sulistioadi ◽  
K.-H. Tseng ◽  
C. K. Shum ◽  
H. Hidayat ◽  
M. Sumaryono ◽  
...  

Abstract. Remote sensing and satellite geodetic observations are capable of hydrologic monitoring of freshwater resources. Although satellite radar altimetry has been used in monitoring water level or discharge, its use is often limited to monitoring large rivers (>1 km) with longer interval periods (>1 week) because of its low temporal and spatial resolutions (i.e., satellite revisit period). Several studies have reported successful retrieval of water levels for small rivers as narrow as 40 m. However, processing current satellite altimetry signals for such small water bodies to retrieve water levels accurately remains challenging. Physically, the radar signal returned by water bodies smaller than the satellite footprint is most likely contaminated by non-water surfaces, which may degrade the measurement quality. In order to address this scientific challenge, we carefully selected the waveform shapes corresponding to the range measurement resulting from standard retrackers for the European Space Agency's (ESA's) Envisat (Environmental Satellite) radar altimetry. We applied this approach to small (40–200 m in width) and medium-sized (200–800 m in width) rivers and small lakes (extent <1000 km2) in the humid tropics of Southeast Asia, specifically in Indonesia. This is the first study that explored the ability of satellite altimetry to monitor small water bodies in Indonesia. The major challenges in this study include the size of the water bodies that are much smaller than the nominal extent of the Envisat satellite footprint (e.g., ~250 m compared to ~1.7 km, respectively) and slightly smaller than the along-track distance (i.e., ~370 m). We addressed this challenge by optimally using geospatial information and optical remote sensing data to define the water bodies accurately, thus minimizing the probability of non-water contamination in the altimetry measurement. Considering that satellite altimetry processing may vary with different geographical regions, meteorological conditions, or hydrologic dynamic, we further evaluated the performance of all four Envisat standard retracking procedures. We found that satellite altimetry provided a good alternative or the only means in some regions of measuring the water level of medium-sized rivers and small lakes with high accuracy (root mean square error (RMSE) of 0.21–0.69 m and a correlation coefficient of 0.94–0.97). In contrast to previous studies, we found that the commonly used Ice-1 retracking algorithm was not necessarily the best retracker among the four standard waveform retracking algorithms for Envisat radar altimetry observing inland water bodies. As a recommendation, we propose to include the identification and selection of standard waveform shapes to complete the use of standard waveform retracking algorithms for Envisat radar altimetry data over small and medium-sized rivers and small lakes.


Author(s):  
E. M. B. Sorensen ◽  
R. R. Mitchell ◽  
L. L. Graham

Endemic freshwater teleosts were collected from a portion of the Navosota River drainage system which had been inadvertently contaminated with arsenic wastes from a firm manufacturing arsenical pesticides and herbicides. At the time of collection these fish were exposed to a concentration of 13.6 ppm arsenic in the water; levels ranged from 1.0 to 20.0 ppm during the four-month period prior. Scale annuli counts and prior water analyses indicated that these fish had been exposed for a lifetime. Neutron activation data showed that Lepomis cyanellus (green sunfish) had accumulated from 6.1 to 64.2 ppm arsenic in the liver, which is the major detoxification organ in arsenic poisoning. Examination of livers for ultrastructural changes revealed the presence of electron dense bodies and large numbers of autophagic vacuoles (AV) and necrotic bodies (NB) (1), as previously observed in this same species following laboratory exposures to sodium arsenate (2). In addition, abnormal lysosomes (AL), necrotic areas (NA), proliferated rough endoplasmic reticulum (RER), and fibrous bodies (FB) were observed. In order to assess whether the extent of these cellular changes was related to the concentration of arsenic in the liver, stereological measurements of the volume and surface densities of changes were compared with levels of arsenic in the livers of fish from both Municipal Lake and an area known to contain no detectable level of arsenic.


Author(s):  
Krum Videnov ◽  
Vanya Stoykova

Monitoring water levels of lakes, streams, rivers and other water basins is of essential importance and is a popular measurement for a number of different industries and organisations. Remote water level monitoring helps to provide an early warning feature by sending advance alerts when the water level is increased (reaches a certain threshold). The purpose of this report is to present an affordable solution for measuring water levels in water sources using IoT and LPWAN. The assembled system enables recording of water level fluctuations in real time and storing the collected data on a remote database through LoRaWAN for further processing and analysis.


2018 ◽  
Vol 7 (4) ◽  
pp. 191
Author(s):  
Sherwan Sh. Qurtas

Recharge estimation accurately is crucial to proper groundwater resource management, for the groundwater is dynamic and replenished natural resource. Usually recharge estimation depends on the; the water balance, water levels, and precipitation. This paper is studying the south-middle part of Erbil basin, with the majority of Quaternary sediments, the unconfined aquifer system is dominant, and the unsaturated zone is ranging from 15 to 50 meters, which groundwater levels response is moderate. The purpose of this study is quantification the natural recharge from precipitation. The water table fluctuation method is applied; using groundwater levels data of selected monitoring wells, neighboring meteorological station of the wells, and the specific yield of the aquifers. This method is widely used for its simplicity, scientific, realistic, and direct measurement. The accuracy depends on the how much the determination of specific yield is accurate, accuracy of the data, and the extrapolations of recession of groundwater levels curves of no rain periods. The normal annual precipitation there is 420 mm, the average recharge is 89 mm, and the average specific yield is around 0.03. The data of one water year of 2009 and 2010 has taken for some technical and accuracy reasons.


Author(s):  
M. Amin Akbari ◽  
Mohammad Tahir ◽  
David W. Litke ◽  
Michael P. Chornack
Keyword(s):  

2006 ◽  
Author(s):  
T.L. Weaver ◽  
S.L. Crowley ◽  
S.P. Blumer
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document