radar altimetry
Recently Published Documents


TOTAL DOCUMENTS

305
(FIVE YEARS 65)

H-INDEX

34
(FIVE YEARS 5)

2021 ◽  
Vol 15 (12) ◽  
pp. 5387-5407
Author(s):  
Elena Zakharova ◽  
Svetlana Agafonova ◽  
Claude Duguay ◽  
Natalia Frolova ◽  
Alexei Kouraev

Abstract. River ice is a key component of the cryosphere. Satellite monitoring of river ice is a rapidly developing area of scientific enquiry, which has wide-ranging implications for climate, environmental and socioeconomic applications. Spaceborne radar altimetry is widely used for monitoring river water regimes; however, its potential for the observation of river ice processes and properties has not been demonstrated yet. Using Ku-band backscatter measurements from the Jason-2 and Jason-3 satellite missions (2008–2019), we demonstrate the potential of radar altimetry for the retrieval of river ice phenology dates and ice thickness for the first time. The altimetric measurements were determined to be sensitive enough to detect the first appearance of ice and the beginning of thermal breakup on the lower Ob River (Western Siberia). The uncertainties in the retrieval of ice event timing were within the 10 d repeat cycle of Jason-2 and Jason-3 in 88 %–90 % of the cases analysed. The uncertainties in the river ice thickness retrievals made via empirical relations between the satellite backscatter measurements and in situ observations, expressed as the root mean square error (RMSE), were of 0.07–0.18 m. A novel application of radar altimetry is the prediction of ice bridge road operations, which is demonstrated herein. We established that the dates of ferry closing and ice road opening and closing in the city of Salekhard can be predicted with an accuracy (expressed as RMSE) of 3–5 d.


Author(s):  
Adama Telly Diepkilé ◽  
Flavien Egon ◽  
Fabien Blarel ◽  
Eric Mougin ◽  
Frédéric Frappart

Abstract. The comprehension of water level fluctuations and the sustainability of the Inner Niger River Delta (IND) is a major concern for the scientific community, but also for the local population. Located in the centre of Mali, the heart of the Sahel, the delta is characterised by a floodable area of more than 32 000 km2 during the rainy season, which contributes very strongly to the vitality of local ecosystem, and is consequently classified as a Ramsar site under the international Convention for Wetlands. In addition, the Delta acts as an environmental and socio-economic development barometer for the entire sub-region. Nowadays, we can observe an increasing fragility of the delta due to climate change, desertification and human activities, and justifies the need for permanent monitoring. The present study is based on the recent successes of radar altimetry, originally designed to monitor the dynamics topography of the ocean, and now very frequently used to retrieve inland water levels, of lakes, rivers, and wetlands. Previous studies evaluated the performances of several radar altimetry missions including Low Resolution Mode (LRM) (Topex-Poseidon, Jason-1/2/3, ERS-2, ENVISAT, and SARAL, and Synthetic Aperture Radar (SAR) Sentinel-3A missions for water level retrievals over 1992–2017. More than 50 times series of water levels were build at the crossing between water bodies and Sentinel-3A and 3B over 2016–2020. Twenty-four comparisons between in-situ and altimetry-based time-series of water levels were achieved over the IND. RMSE generally lower than 0.7 m and r higher than 0.9 were obtained.


2021 ◽  
Author(s):  
Xiaojun Qiao ◽  
Tianxing Chu ◽  
Philippe Tissot ◽  
Jason Louis

2021 ◽  
Vol 13 (19) ◽  
pp. 3804
Author(s):  
Frédéric Frappart ◽  
Pierre Zeiger ◽  
Julie Betbeder ◽  
Valéry Gond ◽  
Régis Bellot ◽  
...  

Surface water storage in floodplains and wetlands is poorly known from regional to global scales, in spite of its importance in the hydrological and the carbon balances, as the wet areas are an important water compartment which delays water transfer, modifies the sediment transport through sedimentation and erosion processes, and are a source for greenhouse gases. Remote sensing is a powerful tool for monitoring temporal variations in both the extent, level, and volume, of water using the synergy between satellite images and radar altimetry. Estimating water levels over flooded area using radar altimetry observation is difficult. In this study, an unsupervised classification approach is applied on the radar altimetry backscattering coefficients to discriminate between flooded and non-flooded areas in the Cuvette Centrale of Congo. Good detection of water (open water, permanent and seasonal inundation) is above 0.9 using radar altimetry backscattering from ENVISAT and Jason-2. Based on these results, the time series of water levels were automatically produced. They exhibit temporal variations in good agreement with the hydrological regime of the Cuvette Centrale. Comparisons against a manually generated time series of water levels from the same missions at the same locations show a very good agreement between the two processes (i.e., RMSE ≤ 0.25 m in more than 80%/90% of the cases and R ≥ 0.95 in more than 95%/75% of the cases for ENVISAT and Jason-2, respectively). The use of the time series of water levels over rivers and wetlands improves the spatial pattern of the annual amplitude of water storage in the Cuvette Centrale. It also leads to a decrease by a factor of four for the surface water estimates in this area, compared with a case where only time series over rivers are considered.


2021 ◽  
Vol 9 ◽  
Author(s):  
Qianqian Li ◽  
Lifeng Bao ◽  
Yong Wang

Satellite radar altimetry has made unique contributions to global and coastal gravity field recovery. This paper starts with a general introduction followed by the progress of satellite radar altimetry technology. Then, the methods of marine gravity field recovery and dominating gravity models are described briefly. Finally, typical gravity models are compared with shipboard gravity measurements to evaluate their accuracies in offshore and coastal regions of China. The root mean squares of deviations between gravity models and shipboard gravity are all more than 7 mGal in offshore regions and within the range of 9.5–10.2 mGal in coastal regions. Further analysis in coastal regions indicates that the new gravity models with new satellite missions including Jason-2, SARAL/Altika, and Envisat data have relatively higher accuracy, especially SARAL/Altika data, significantly improving the coastal gravity field. Accuracies are low in areas with strong currents, showing that tide correction is very important for altimetry-derived marine gravity recovery as well as shipboard measurements in coastal gravity field determination. Moreover, as an external check, shipboard gravity data need more operations to improve their precision, such as higher instrument accuracy and finer data processing.


2021 ◽  
Author(s):  
Weiran Li ◽  
Cornelis Slobbe ◽  
Stef Lhermitte

Abstract. Satellite radar altimetry has been an important tool for cryospheric applications such as measuring ice-sheet height or assessing snow/ice anomalies (e.g., the extensive melt in Greenland in 2012). Although accurate height measurements are key for such applications, slope-induced errors due to undulating topography within the kilometre-wide pulse-limited footprint can cause multi-meter errors. Therefore different correction methods have been developed ranging from the slope method to the point-based method. Each of these methods have shortcomings as they either neglect the actual topography or the actual footprint that can be estimated by a combination of the leading edge and topography. Therefore, a novel Leading Edge Point-Based (LEPTA) method is presented that corrects for the slope-induced error by including the leading edge information of the radar waveform to determine the impact point. The principle of the method is that only the points on the ground that are within range determined by the begin and end of the leading edge are used to determine the impact point. Benchmarking of the LEPTA method to the slope- and point-based method based on CryoSat-2 LRM acquisitions over Greenland in 2019 shows that heights obtained by LEPTA outperform the other methods when compared to ICESat-2 observations, both in the flat, interior regions of Greenland and in regions with more complex topography. The median difference between the slope-corrected CryoSat-2 and the ICESat-2 heights is almost negligible, whereas the other methods can have a 0.22 m and 0.69 m difference, and the Level-2 data provided by ESA have a 0.01 m difference. The median absolute deviation, which we use as an indicator of the variation of errors, is also the lowest in LEPTA (0.09 m) in comparison to the aforementioned methods (0.22 m and 0.13 m) and ESA Level-2 data (0.15 m). Based on that, we recommend considering LEPTA to obtain accurate height measurements with radar altimetry data, especially in regions with complex topography.


Sign in / Sign up

Export Citation Format

Share Document