Preparation and heat transfer characteristics of microencapsulated phase change material slurry: A review

2011 ◽  
Vol 15 (9) ◽  
pp. 4624-4632 ◽  
Author(s):  
Zhi Chen ◽  
Guiyin Fang
Author(s):  
James A. Howard ◽  
Patrick A. Walsh

This paper investigates laminar heat transfer characteristic of two-phase microencapsulated phase change material (MPCM) suspension flows within mini-channels under a constant wall heat flux boundary. Capsules containing paraffin wax with phase change temperature between 35.1°C and 44°C are examined and found to be well suited for electronics cooling applications using liquid cold plate technologies. In particular, it is shown that the large thermal capacity of MPCM slurries around the phase change temperature can lead towards greater isothermality of isoflux systems, a characteristic of significant interest to telecommunication, laser and biomedical applications. The principal focus of the study is to examine heat transfer characteristics within standard tube flow geometries, quantify the heat transfer augmentation/degradation observed and finally, elucidate the mechanisms from which these result. Through the study volume concentrations of the MPCM slurry were varied between 30.2% and 5.03%. High resolution local heat transfer measurements were obtained using infrared thermography and results presented in terms of local Nusselt number versus inverse Graetz parameter. These spanned both the thermal entrance and the fully developed flow regions with inverse Graetz number ranging from 10−3 to 100. Results show that significant heat transfer enhancements are attainable via the use of MPCM slurries over conventional single phase coolants. Overall, the study highlights mechanisms that lead to significant heat transfer enhancements in heat exchange devices employing micro-encapsulated phase change material slurries.


Author(s):  
Rami Sabbah ◽  
Jamal Yagoobi ◽  
Said Al Hallaj

This experimental and numerical study investigates Micro-Encapsulated Phase Change Material (MEPCM) heat transfer characteristics and corresponding pressure drop. To conduct this study, an experimental setup consisting of a steel tube with an inner diameter of 4.3mm, outer diameter of 6.5mm and a length of 1,016mm is selected. A MEPCM mass concentration of 20% slurry with particle diameter ranging between 5–15μm is included in this study. Tube wall temperature profile, fluid inlet, outlet temperatures, the pressure drop across the tube are measured and corresponding Nusselt number are determined for various operating conditions. The experimental results are used to validate the numerical model predictions. The numerical model results show good agreement with the experimental data under various operating conditions. The controlling parameters are identified and their effects on the heat transfer characteristics of micro-channels with MEPCM slurries are evaluated.


Sign in / Sign up

Export Citation Format

Share Document