Paradigm shift from mechanical direct injection diesel engines to advanced injection strategies of diesel homogeneous charge compression ignition (HCCI) engines- A comprehensive review

2017 ◽  
Vol 70 ◽  
pp. 369-384 ◽  
Author(s):  
S.V. Khandal ◽  
N.R. Banapurmath ◽  
V.N. Gaitonde ◽  
S.S. Hiremath
2005 ◽  
Vol 128 (1) ◽  
pp. 16-27 ◽  
Author(s):  
Salvador M. Aceves ◽  
Joel Martinez-Frias ◽  
Gordon M. Reistad

This paper presents an evaluation of the applicability of homogeneous charge compression ignition (HCCI) engines for small-scale cogeneration (<1MWe) in comparison to five previously analyzed prime movers. The five comparator prime movers include stoichiometric spark-ignited (SI) engines, lean burn SI engines, diesel engines, microturbines, and fuel cells. The investigated option, HCCI engines, is a relatively new type of engine that has some fundamental differences with respect to other prime movers. The prime movers are compared by calculating electric and heating efficiency, fuel consumption, nitrogen oxide (NOx) emissions, and capital and fuel costs. Two cases are analyzed. In case 1, the cogeneration facility requires combined power and heating. In case 2, the requirement is for power and chilling. The results show that HCCI engines closely approach the very high fuel utilization efficiency of diesel engines without the high emissions of NOx and the expensive diesel fuel. HCCI engines offer a new alternative for cogeneration that provides a combination of low cost, high efficiency, low emissions, and flexibility in operating temperatures that can be optimally tuned for cogeneration systems. HCCI is the most efficient engine technology that meets the strict 2007 CARB NOx standards for cogeneration engines, and merits more detailed analysis and experimental demonstration.


2021 ◽  
Author(s):  
Giovani Dambros Telli ◽  
Carlos Roberto Altafini ◽  
Carlos Alberto Costa ◽  
Josimar Souza Rosa ◽  
Mario Eduardo Martins ◽  
...  

Author(s):  
Salvador M. Aceves ◽  
Joel Martinez-Frias ◽  
Gordon M. Reistad

This paper presents an evaluation of the applicability of Homogeneous Charge Compression Ignition Engines (HCCI) for small-scale cogeneration (less than 1 MWe) in comparison to five previously analyzed prime movers. The five comparator prime movers include stoichiometric spark-ignited (SI) engines, lean burn SI engines, diesel engines, microturbines and fuel cells. The investigated option, HCCI engines, is a relatively new type of engine that has some fundamental differences with respect to other prime movers. Here, the prime movers are compared by calculating electric and heating efficiency, fuel consumption, nitrogen oxide (NOx) emissions and capital and fuel cost. Two cases are analyzed. In Case 1, the cogeneration facility requires combined power and heating. In Case 2, the requirement is for power and chilling. The results show that HCCI engines closely approach the very high fuel utilization efficiency of diesel engines without the high emissions of NOx and the expensive diesel fuel. HCCI engines offer a new alternative for cogeneration that provides a unique combination of low cost, high efficiency, low emissions and flexibility in operating temperatures that can be optimally tuned for cogeneration systems. HCCI engines are the most efficient engine technology that meets that oncoming 2007 CARB NOx standards for cogeneration engines. The HCCI engine appears to be a good option for cogeneration systems and merits more detailed analysis and experimental demonstration.


2005 ◽  
Vol 6 (3) ◽  
pp. 215-230 ◽  
Author(s):  
Y Ra ◽  
E J Hruby ◽  
R D Reitz

Homogeneous charge compression ignition (HCCI) combustion is an alternative to current engine combustion systems and is used as a method to reduce emissions. It has the potential nearly to eliminate engine-out NOx emissions while producing diesel-like engine efficiencies, when a premixture of gas-phase fuel and air is burned spontaneously and entirely by an autoignition process. However, when direct injection is used for diesel fuel mixture preparation in engines, the complex in-cylinder flow field and limited mixing times may result in inhomogeneity of the charge. Thus, in order to minimize non-uniformity of the charge, early injection of the fuel is desirable. However, when fuel is injected during the intake or early compression stroke, the use of high-pressure injection is limited by the relatively low in-cylinder gas pressure because of spray impingement on the cylinder walls. Thus, it is also of interest to consider low-pressure injectors as an alternative. In the present paper, the parametric behaviour of the combustion characteristics in an HCCI engine operated with a low-pressure fuel injector were investigated through numerical simulations and engine experiments. Parameters including the start-of-injection (SOI) timing and exhaust gas recirculation were considered, and diesel and n-heptane fuels were used. The results show good agreement of behaviour trends between the experiments and the numerical simulations. With its lower vaporization rates, significant effects of the SOI timing and intake gas temperature were seen for diesel fuel due to the formation of wall films. The modelling results also explained the origin of high-temperature NO x-producing regions due to the effect of the gas density on the spray.


Sign in / Sign up

Export Citation Format

Share Document