Homogeneous Charge Compression Ignition (HCCI) combustion: Implementation and effects on pollutants in direct injection diesel engines

2011 ◽  
Vol 88 (3) ◽  
pp. 559-567 ◽  
Author(s):  
Suyin Gan ◽  
Hoon Kiat Ng ◽  
Kar Mun Pang
Author(s):  
Usman Asad ◽  
Ming Zheng ◽  
David S.-K. Ting ◽  
Jimi Tjong

Homogeneous charge compression ignition (HCCI) combustion in diesel engines can provide cleaner operation with ultralow NOx and soot emissions. While HCCI combustion has generated significant attention in the last decade, however, till date, it has seen very limited application in production diesel engines. HCCI combustion is typically characterized by earlier than top-dead-center (pre-TDC) phasing, very high-pressure rise rates, short combustion durations, and minimal control over the timing of the combustion event. To offset the high reactivity of the diesel fuel, large amounts of exhaust gas recirculation (EGR) (30–60%) are usually applied to postpone the initiation of combustion, shift the combustion toward TDC, and alleviate to some extent, the high-pressure rise rates and the reduced energy efficiency. In this work, a detailed analysis of HCCI combustion has been carried out on a high-compression ratio (CR), single-cylinder diesel engine. The effects of intake boost, EGR quantity/temperature, engine speed, injection scheduling, and injection pressure on the operability limits have been empirically determined and correlated with the combustion stability, emissions, and performance metrics. The empirical investigation is extended to assess the suitability of common alternate fuels (n-butanol, gasoline, and ethanol) for HCCI combustion. On the basis of the analysis, the significant challenges affecting the real-world application of HCCI are identified, their effects on the engine performance quantified, and possible solutions to overcome these challenges explored through both theoretical and empirical investigations. This paper intends to provide a comprehensive summary of the implementation issues affecting HCCI combustion in diesel engines.


2006 ◽  
Vol 129 (1) ◽  
pp. 230-238 ◽  
Author(s):  
Wanhua Su ◽  
Bin Liu ◽  
Hui Wang ◽  
Haozhong Huang

Early injection, well before top dead center (TDC), has perhaps been the most commonly investigated approach to obtain homogeneous charge compression ignition (HCCI) combustion in a direct-injection (DI) diesel engine. However, wall wetting due to overpenetration of the fuel spray can lead to unacceptable amounts of unburned fuel and removal of lubrication oil. Another difficulty of diesel HCCI combustion is the control of combustion phasing. In order to overcome these difficulties, a multipulse fuel injection technology has been developed for the purpose of organizing diesel HCCI combustion, by which the injection width, injection number, and the dwell time between two neighboring pulse injections can be flexibly regulated. In present paper, the effects of a series of multipulse injection modes realized based on the prejudgment of combustion requirement, on engine emissions, thermal efficiency, and cycle fuel energy distribution of diesel HCCI combustion are studied. The designed injection modes include so-called even mode, hump mode, and progressive increase mode, and each mode with five and six pulses, respectively. Engine test was conducted with these modes. The experimental results show that diesel HCCI combustion is extremely sensitive to multipulse injection modes and that thermal efficiency can be improved with carefully modulated ones. There are many modes that can reach near zero NOx and smoke emissions, but it is significant to be aware that multipulse injection mode must be carefully designed for higher thermal efficiency.


2003 ◽  
Vol 4 (3) ◽  
pp. 163-177 ◽  
Author(s):  
P. A. Caton ◽  
A. J. Simon ◽  
J. C. Gerdes ◽  
C. F. Edwards

Studies have been conducted to assess the performance of homogeneous charge compression ignition (HCCI) combustion initiated by exhaust reinduction from the previous engine cycle. Reinduction is achieved using a fully flexible electrohydraulic variable-valve actuation system. In this way, HCCI is implemented at low compression ratio without throttling the intake or exhaust, and without preheating the intake charge. By using late exhaust valve closing and late intake valve opening strategies, steady HCCI combustion was achieved over a range of engine conditions. By varying the timing of both valve events, control can be exerted over both work output (load) and combustion phasing. In comparison with throttled spark ignition (SI) operation on the same engine, HCCI achieved 25–55 per cent of the peak SI indicated work, and did so at uniformly higher thermal efficiency. This was accompanied by a two order of magnitude reduction in NO emissions. In fact, single-digit (ppm) NO emissions were realized under many load conditions. In contrast, hydrocarbon emissions proved to be significantly higher in HCCI combustion under almost all conditions. Varying the equivalence ratio showed a wider equivalence ratio tolerance at low loads for HCCI.


2008 ◽  
Vol 9 (5) ◽  
pp. 361-397 ◽  
Author(s):  
M Shahbakhti ◽  
C R Koch

The cyclic variations of homogeneous charge compression ignition (HCCI) ignition timing is studied for a range of charge properties by varying the equivalence ratio, intake temperature, intake pressure, exhaust gas recirculation (EGR) rate, engine speed, and coolant temperature. Characterization of cyclic variations of ignition timing in HCCI at over 430 operating points on two single-cylinder engines for five different blends of primary reference fuel (PRF), (iso-octane and n-heptane) is performed. Three distinct patterns of cyclic variation for the start of combustion (SOC), combustion peak pressure ( Pmax), and indicated mean effective pressure (i.m.e.p.) are observed. These patterns are normal cyclic variations, periodic cyclic variations, and cyclic variations with weak/misfired ignitions. Results also show that the position of SOC plays an important role in cyclic variations of HCCI combustion with less variation observed when SOC occurs immediately after top dead centre (TDC). Higher levels of cyclic variations are observed in the main (second) stage of HCCI combustion compared with that of the first stage for the PRF fuels studied. The sensitivity of SOC to different charge properties varies. Cyclic variation of SOC increases with an increase in the EGR rate, but it decreases with an increase in equivalence ratio, intake temperature, and coolant temperature.


Sign in / Sign up

Export Citation Format

Share Document