Integrating high share of renewable energy into power system using customer-sited energy storage

2021 ◽  
Vol 143 ◽  
pp. 110893
Author(s):  
Siyuan Chen ◽  
Zheng Li ◽  
Weiqi Li
2018 ◽  
Vol 8 (9) ◽  
pp. 1453 ◽  
Author(s):  
Huanan Liu ◽  
Dezhi Li ◽  
Yuting Liu ◽  
Mingyu Dong ◽  
Xiangnan Liu ◽  
...  

With the rapid development of industry, more fossil energy is consumed to generate electricity, which increases carbon emissions and aggravates the burden of environmental protection. To reduce carbon emissions, traditional centralized power generation networks are transforming into distributed renewable generation systems. However, the deployment of distributed generation systems can affect power system economy and stability. In this paper, under different time scales, system economy, stability, carbon emissions, and renewable energy fluctuation are comprehensively considered to optimize battery and super-capacitor installation capacity for an off-grid power system. After that, based on the genetic algorithm, this paper shows the optimal system operation strategy under the condition of the theoretical best energy storage capacity. Finally, the theoretical best capacity is tested under different renewable energy volatility rates. The simulation results show that by properly sizing the storage system’s capacity, although the average daily costs of the system can increase by 10%, the system’s carbon emissions also reduce by 42%. Additionally, the system peak valley gap reduces by 23.3%, and the renewable energy output’s fluctuation range and system loss of load probability are successfully limited in an allowable range. Lastly, it has less influence on the theoretical best energy storage capacity if the renewable energy volatility rate can be limited to within 10%.


Author(s):  
M. S. A. Mustaza ◽  
M. A. M. Ariff ◽  
Sofia Najwa Ramli

Energy storage system (ESS) plays a prominent role in renewable energy (RE) to overcome the intermittent of RE energy condition and improve energy utilization in the power system. However, ESS for residential applications requires specific and different configuration. Hence, this review paper aims to provide information for system builders to decide the best setup configuration of ESS for residential application. In this paper, the aim is to provide an insight into the critical elements of the energy storage technology for residential application. The update on ESS technology, battery chemistry, battery charging, and monitoring system and power inverter technology are reviewed. Then, the operation, the pro, and cons of each variant of these technologies are comprehensively studied. This paper suggested that the ESS for residential ESS requires NMC battery chemistry because it delivers an all-rounded performance as compared to other battery chemistries. The four-stages constant current (FCC) charging technique is recommended because of the fast charging capability and safer than other charging techniques reviewed. Next, the battery management system (BMS) is recommended to adapt in advance machine learning method to estimate the state of charge (SOC), state of health (SOH) and internal temperature (IT) to increase the safety and prolong the lifespan of the batteries. Finally, these recommendations and solutions aimed to improve the utilization of RE energy in power system, especially in residential ESS application and offer the best option that is available on the shelf for the residential ESS application in the future.


2019 ◽  
Vol 118 ◽  
pp. 02054
Author(s):  
Jingli Li ◽  
Wannian Qi ◽  
Jun Yang ◽  
Yi He ◽  
Jingru Luo ◽  
...  

This paper proposes a Wind-Photovoltaic-Thermal Energy Storage hybrid power system with an electric heater. The proposed system consists of wind subsystem, photovoltaic subsystem, electric heater, thermal energy storage and steam turbine unit. The electric heater is used to convert the redundant electricity from wind or photovoltaic subsystem into heat, which is stored in thermal energy storage. When the system output is less than the load demand, thermal energy storage system releases heat to generate electricity. In this paper, the optimal objective is to minimize the levelized cost of energy and maximize the utilization rates of renewable energy and transmission channel. The fitness function is compiled according to the scheduling strategy, and the capacity optimization problem is solved by particle swarm optimization algorithm in MATLAB. The case analysis show that the proposed system can effectively increase the utilization rate of renewable energy and transmission channel.


Author(s):  
Ricardo Ramos ◽  
Rui Castro

Abstract The main goal of this work is to study the role of energy storage in the context of the Portuguese power system by the year 2030. Portugal is one of the countries in the world with more installed energy storage capacity, namely pumped hydro storage (PHS). The simulations are performed with energyplan tool and allow us to predict the energy mix in Portugal by the year 2030; to forecast the utilization of the storage capacity, namely projections for the energy produced by PHS; to estimate CO2 emissions and percentage of renewable energy sources (RES) utilization; to assess the necessary storage capacity to avoid renewable curtailment; and to evaluate the future needs of installing further storage capacity, either with more PHS capacity or with the introduction of batteries. PHS revealed that it is important to avoid the curtailment of renewable energy, especially in a scenario of higher RES shares. It is shown that the increase in RES contribution would decrease the overall costs of the system, leading to thinking that further efforts should be made to increase the RES installed capacity and go beyond the official RES predictions for 2030. It is also concluded that the predicted storage capacity for 2030 can accommodate the expected increase in variable renewable generation without any further need for investments in PHS or battery solutions.


Energies ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 376 ◽  
Author(s):  
Ivan Pavić ◽  
Zora Luburić ◽  
Hrvoje Pandžić ◽  
Tomislav Capuder ◽  
Ivan Andročec

Battery energy storage systems (BESS) and renewable energy sources are complementary technologies from the power system viewpoint, where renewable energy sources behave as flexibility sinks and create business opportunities for BESS as flexibility sources. Various stakeholders can use BESS to balance, stabilize and flatten demand/generation patterns. These applications depend on the stakeholder role, flexibility service needed from the battery, market opportunities and obstacles, as well as regulatory aspects encouraging or hindering integration of storage technologies. While developed countries are quickly removing barriers and increasing the integration share of BESS, this is seldom the case in developing countries. The paper identifies multiple case opportunities for different power system stakeholders in Croatia, models potential BESS applications using real-world case studies, analyzes feasibility of these investments, and discusses financial returns and barriers to overcome.


Sign in / Sign up

Export Citation Format

Share Document