scholarly journals Inducing seed germination in Ceratotheca triloba grown under saline and heavy metal stress using traditional and non-traditional plant growth regulators

2015 ◽  
Vol 98 ◽  
pp. 189
Author(s):  
N.A. Masondo ◽  
A.O. Aremu ◽  
J.F. Finnie ◽  
J. Van Staden
1946 ◽  
Vol 107 (4) ◽  
pp. 575-583 ◽  
Author(s):  
R. W. Allard ◽  
H. Robert DeRose ◽  
C. P. Swanson

HortScience ◽  
2016 ◽  
Vol 51 (7) ◽  
pp. 887-891 ◽  
Author(s):  
Khalid M. Elhindi ◽  
Yaser Hassan Dewir ◽  
Abdul-Wasea Asrar ◽  
Eslam Abdel-Salam ◽  
Ahmed Sharaf El-Din ◽  
...  

Peppermint (Mentha piperita), sweet basil (Ocimum basilicum), and coriander (Coriandrum sativum) are important medicinal plants in the pharmacological industry. These plants are produced in commercial scale but their seeds exhibit low germination percentages under favorable germination conditions. Enhancing seed germination is thus crucial for improving the production of these plants. The influence of gibberellic acid (GA3), indole-3-acetic acid (IAA), indol-3-butyric acid (IBA), and naphthalene acetic acid (NAA) on seed germination of the three plants were investigated. The seeds were soaked in each plant growth regulator at 50, 100, and 150 mg·L−1 for 24 hours at 25 ± 2 °C. Seed germination was checked daily for 20 days and germination parameters including final germination percentage (FGP), corrected germination rate (CGRI), and number of days lapsed to reach 50% of FGP (GT50) were recorded. The phosphorus and protein contents were determined in germinated seedlings on day 21 of culture. All plant growth regulators enhanced seed germination as compared with control. However, GA3 improved seed germination more than IAA, IBA, and NAA. GA3 at 100 mg·L−1 significantly increased the FGP from 22.3% and 33.3% (control) to 74% and 65.6% for peppermint and sweet basil, respectively. Low concentration of GA3 at 50 mg·L−1 increased the FGP for coriander from 27% to 52.3%. GA3 also increased CGRI, GT50, phosphorus, and protein contents in germinated seedlings as compared with control. Seeds of peppermint, sweet basil, and coriander possess a physiological dormancy that could be elevated by GA3 presowing treatment. This study established a successful methodology for optimizing seed germination to satisfy the demand for the medicinal parts of these plants in the pharmacological industry.


2018 ◽  
Vol 5 (4) ◽  
pp. 182-190 ◽  
Author(s):  
Amit Kumar Pal ◽  
Arpita Chakraborty ◽  
Chandan Sengupta

Rapidly increasing worldwide industrialization has led to many environmental problems by the liberation of pollutants such as heavy metals. Day by day increasing metal contamination in soil and water can be best coped by the interaction of potential plant growth promoting rhizobacteria for plant growth. The effect of plant growth promoting rhizobacteria (PGPR) treatment on growth of chilli plant subjected to heavy metal stress was evaluated. Growth of chilli plant was examined with inoculation of two isolated PGPR (Lysinibacillus varians and Pseudomonas putida) under cadmium (30 ppm), lead (150 ppm) and the combination of heavy metal (Cd+Pb) stress condition. Among these two bacteria L. varians produced slightly better plant growth enhancement. Different growth parameters of chilli plants were reduced under heavy metal stress. Whereas, Cd and Pb tolerant PGPR inoculation, in root associated soil, enhanced plant growth development under test heavy metal contaminated soil. So, these PGPRs may easily be used as bio-fertilizers which will nullify the adverse effect of heavy metal on plant growth.


Sign in / Sign up

Export Citation Format

Share Document