scholarly journals Effects of plant growth regulators on in vitro seed germination and seedling development of Enhalus acoroides, a tropical seagrass

1946 ◽  
Vol 107 (4) ◽  
pp. 575-583 ◽  
Author(s):  
R. W. Allard ◽  
H. Robert DeRose ◽  
C. P. Swanson

2018 ◽  
Vol 5 (2) ◽  
pp. 152-159
Author(s):  
Jay Prakash Mishra ◽  
◽  
Deepti Bhadrawale ◽  
Upasana Yadav ◽  
Naseer Mohammad ◽  
...  

2011 ◽  
Vol 74 (3) ◽  
pp. 193-198 ◽  
Author(s):  
Ewa Łojkowska ◽  
Aleksandra Królicka ◽  
Matylda Sidwa-Gorycka ◽  
Jan J. Rybczyński ◽  
Dariusz L. Szlachetko ◽  
...  

In order to estimate the best germination conditions of <em>Encyclia</em> aff. <em>oncidioides</em> seeds, five different media (Fast, Knudson C modified by Vajrabhaya, Murashige and Skoog, PB2 and modified Vacin and Went) with different concentrations of plant growth regulators such as benzyladenine (BA), naphthaleneacetic acid (NAA) and gibberellic acid (GA3) were tested. No beneficial effect was observed when BA and NAA were applied to the germination medium and GA<sub>3</sub> inhibited germination. The effect of light, activated charcoal, coconut water and casein hydrolysate on seed germination was also studied. The growth rate of seedlings on three different media supplemented with activated charcoal and plant growth regulators was checked. The applied plant growth regulators had no beneficial effect on the further growth of seedlings. Fast and PB<sub>2</sub> media with 0.2% activated charcoal proved to be the best for <em>E.</em> aff. <em>oncidioides</em> seed germination, seedling development and plantlet propagation.


Horticulturae ◽  
2021 ◽  
Vol 7 (11) ◽  
pp. 486
Author(s):  
María Eugenia Martínez ◽  
Lorena Jorquera ◽  
Paola Poirrier ◽  
Katy Díaz ◽  
Rolando Chamy

There are several studies on the medicinal properties of dandelions (Taraxacum officinale), but few studies are aimed at understanding the in vitro germination process of this plant to improve its propagation. This research was focused on studying in vitro seed germination and development of seedlings under different carbon sources, glucose (GLU) or sucrose (SUC) and its concentrations (1.0–5.5%). Additionally, the effect of supplementation with plant growth regulators (PGRs) was studied, measuring the germination capacity, uncertainty and synchrony. Germination was promoted under low carbon source concentrations (≤2.3%), whereas higher concentrations (≥3.2%) had a detrimental effect on this process. GLU allowed the final germination percentages to be slightly better than SUC. Uniformity and synchrony values improved with the presence of PGRs. Results suggested that the best condition to assess T. officinale seed germination is in a medium containing GLU 2.3%, 0.5 mg/L 1-Naphthaleneacetic acid (NAA) and 0.5 mg/L 6-Benzylaminopurine acid (BAP). After germination, the best condition for optimal growth of T. officinale seedlings was 1.0% SUC supplemented with 0.225 mg/L of NAA and 3.0 mg/L of BAP for initial shoot development. The survival rate was 97% after greenhouse acclimatization. This new method of germination was implemented for the massive propagation of T. officinale for further medicinal studies.


Agronomy ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 320
Author(s):  
Nisar Ahmad Zahid ◽  
Hawa Z.E. Jaafar ◽  
Mansor Hakiman

Ginger (Zingiber officinale Roscoe) var. Bentong is a monocotyledon plant that belongs to the Zingiberaceae family. Bentong ginger is the most popular cultivar of ginger in Malaysia, which is conventionally propagated by its rhizome. As its rhizomes are the economic part of the plant, the allocation of a large amount of rhizomes as planting materials increases agricultural input cost. Simultaneously, the rhizomes’ availability as planting materials is restricted due to the high demand for fresh rhizomes in the market. Moreover, ginger propagation using its rhizome is accompanied by several types of soil-borne diseases. Plant tissue culture techniques have been applied to produce disease-free planting materials of ginger to overcome these problems. Hence, the in vitro-induced microrhizomes are considered as alternative disease-free planting materials for ginger cultivation. On the other hand, Bentong ginger has not been studied for its microrhizome induction. Therefore, this study was conducted to optimize sucrose and plant growth regulators (PGRs) for its microrhizome induction. Microrhizomes were successfully induced in Murashige and Skoog (MS) medium supplemented with a high sucrose concentration (>45 g L−1). In addition, zeatin at 5–10 µM was found more effective for microrhizome induction than 6-benzylaminopurine (BAP) at a similar concentration. The addition of 7.5 µM 1-naphthaleneacetic acid (NAA) further enhanced microrhizome formation and reduced sucrose’s required dose that needs to be supplied for efficient microrhizome formation. MS medium supplemented with 60 g L−1 sucrose, 10 µM zeatin and 7.5 µM NAA was the optimum combination for the microrhizome induction of Bentong ginger. The in vitro-induced microrhizomes sprouted indoors in moist sand and all the sprouted microrhizomes were successfully established in field conditions. In conclusion, in vitro microrhizomes can be used as disease-free planting materials for the commercial cultivation of Bentong ginger.


2011 ◽  
Vol 3 (3) ◽  
pp. 97-100
Author(s):  
Naimeh SHARIFMOGHADAM ◽  
Abbas SAFARNEJAD ◽  
Sayed Mohammad TABATABAEI

The Almond (Amygdalus communis) is one of the most important and oldest commercial nut crops, belonging to the Rosaceae family. Almond has been used as base material in pharmaceutical, cosmetic, hygienically and food industry. Propagation by tissue culture technique is the most important one in woody plants. In the current research, in vitro optimization of tissue culture and mass production of almond was investigated. In this idea, explants of actively growing shoots were collected and sterilized, then transferred to MS medium with different concentrations and combinations of plant growth regulators. The experiment was done in completely randomized blocks design, with 7 treatment and 30 replications. After 4 weeks, calli induction, proliferation, shoot length and number of shoot per explants were measured. Results showed that the best medium for shoot initiation and proliferation was MS + 0.5 mg/l IAA (Indol-3-Acetic Acid) + 1 mg/l BA (Benzyl Adenine). Autumn was the best season for collecting explants. The shoots were transferred to root induction medium with different concentrations of plant growth regulators. The best root induction medium was MS + 0.5 mg/l IBA (Indol Butyric Acid).


2009 ◽  
Vol 66 (3) ◽  
pp. 293-297 ◽  
Author(s):  
Kênia Almeida Diniz ◽  
Paulo de Albuquerque Silva ◽  
João Almir Oliveira ◽  
José Renato Emiliorelli Evangelista

Small sized seeds, such as the horticultural species, have limited quantities of reserves that can be balanced by coating then with essential nutrients for their initial development. In addition, inoculation of the seeds with microorganisms may protect the plants against phytopathogens, thus enhancing their growth. The present work had the objective of evaluate the physiological quality and seedling development of sweet pepper seeds and seedlings coated with several kind of films. Seeds were first coated with polymers and then with antagonistic microorganisms (Trichoderma viride, Trichoderma polysporhum, Trichoderma stromaticum, Beauveria bassiana, Metarhizium anisopliae), mycorrhizas, aminoacids, micronutrients and plant growth regulators. Evaluation was performed for percentage of germination and for seedling emergence, speed of emergence index, number of plants, dry mass of the aerial and root parts and height of the seedlings. Inoculation with Trichoderma viride increased the percentage and rate of the seedlings emergence Inoculation with Trichoderma viride, Metarhizium anisopliae and mycorrhizas promote better seedling development; seed microbiolization with microorganisms Trichoderma viride, T. polysporhum, T. stromaticum, Beauveria bassiana, Metarhizium anisopliae. Mycorrhizas mixture negatively affected seeds and seedling quality. Seed covering with plant growht regulator, at a 5 mL kg-1 dose increased the roots dry matter.


Sign in / Sign up

Export Citation Format

Share Document