scholarly journals Corrigendum to “Centrifuge modelling of the behaviour of pile groups under vertical eccentric load”. [Soils Found. 61 (2021) 465–479]

Author(s):  
L. de Sanctis ◽  
R. Di Laora ◽  
T.K. Garala ◽  
S.P.G. Madabhushi ◽  
G.M.B. Viggiani ◽  
...  
Author(s):  
L. de Sanctis ◽  
R. Di Laora ◽  
T.K. Garala ◽  
S.P.G. Madabhushi ◽  
G.M.B. Viggiani ◽  
...  

1989 ◽  
Vol 26 (1) ◽  
pp. 34-42 ◽  
Author(s):  
G. G. Meyerhof ◽  
D. P. Ghosh

The ultimate bearing capacity of flexible single model piles and small pile groups of timber and nylon in loose sand and soft clay has been determined under various combinations of eccentricity and inclination of the load varying in direction from vertical to horizontal. The results of the load tests are presented in the form of polar bearing capacity diagrams and they are compared with the theoretical estimates based on the concept of an effective embedment depth in terms of the behaviour of equivalent rigid piles. Reasonable agreement has been found between the observed and predicted ultimate bearing capacity of flexible piles under any combination of eccentricity and inclination of loads. Key words: flexible piles, pile groups, ultimate bearing capacity, ultimate moment, model test, eccentric load, inclined load, sand, clay.


2018 ◽  
Vol 14 (1) ◽  
pp. 193-205 ◽  
Author(s):  
Raffaele Di Laora ◽  
Luca de Sanctis ◽  
Stefano Aversa

1991 ◽  
Vol 28 (6) ◽  
pp. 909-917 ◽  
Author(s):  
A. S. Yalcin ◽  
G. G. Meyerhof

The bearing capacity of flexible model piles and small pile groups under axial, lateral, and various combinations of eccentric and inclined loads in layered soil consisting of clay overlying sand is investigated. Ultimate pile capacity is found to depend on the eccentricity and inclination of the load and, more significantly, on the ratio of the upper layer thickness to pile embedment. Theoretical estimates based on the concept of effective pile embedment ratio and expressed in terms of equivalent rigid piles agree reasonably well with the experimental values. The behaviour of 2 × 2 flexible model pile groups is observed to be similar to that of single piles. Key words: bearing capacity, piles, flexible pile, pile group, layered soil, sand, clay, eccentric load, inclined load, model pile test.


2021 ◽  
Author(s):  
Badr Ouzzine ◽  
Jean de Sauvage ◽  
Iheb Ghandri ◽  
Giulia Viggiani ◽  
Gopal Madabhushi

<p>The growing energy needs of urban areas and the current environmental context have led to the development of new energy technologies. Since the 1980s, energy geo-structures have been developed and applied, in which heat exchanger pipes are attached to the reinforcement cages of geotechnical structures such as pile foundations or diaphragm walls. By circulating a heat transfer fluid in these pipes, and using a heat pump, these low-enthalpy solutions make it possible to produce heating and cooling with significantly reduced CO<sub>2</sub> emissions. However, the cyclic thermal loading generates stresses and strains in the geo-structure and in the surrounding soil, due to thermal expansion. Research on the behaviour of energy pile groups is rather limited, particularly for piled foundations in which only a few piles within a group are thermally activated. Indeed, the implementation of this type of energy technology is slow because of the many concerns about the impact of thermal cycles on the mechanical behaviour of the piles. The complexity of this problem is increased if a natural groundwater flow is present, as this has the potential to affect significantly heat transfer between piles in the group.</p><p>To tackle these questions, the stresses induced in pile groups by thermal activation were studied by geotechnical centrifuge modelling.  Two reduced scale models of 2*2 pile groups were examined, one in dry and one in saturated Hostun sand. In the tests, only one pile was subjected to cyclic thermal loading, but all the pile heads were connected to the same raft. The model piles were cast in cement and copper pipes were used to model simultaneously the reinforcement cages and the heat exchanger pipes. This modelling highlighted that, when heated, the energy pile goes into additional compression along with the diagonally opposite pile, due to the raft rotation. The other two thermally inactive piles showed a decrease of axial load. The saturation of the sand layer displayed a strong role not only on the transient response, but also on the thermal equilibrium due to additional thermal inertia.</p><p>In order to make relevant comparisons between the observations made on the reduced scale models and those made at prototype scale, scaling laws must be respected, so that the model and the full-scale structure undergo the same physical phenomena. Therefore, preliminary theoretical work was carried out to examine the various thermal phenomena involved. For each phenomenon of interest, the quantities that allow keeping dimensionless numbers identical or at least of the same order of magnitude are studied. Some phenomena were verified also numerically or experimentally. This work is presented in the form of a catalog of scaling laws derived for both mechanical and thermal behaviour of pile foundations.</p>


1984 ◽  
Vol 21 (3) ◽  
pp. 389-396 ◽  
Author(s):  
G. G. Meyerhof ◽  
A.S. Yalcin

In connection with the design of offshore structures and bridge foundations, the ultimate bearing capacity of rigid piles and pile groups in clay has been determined under various combinations of eccentricity and inclination of the load varying from the vertical to horizontal directions. The results of load tests on single rigid model piles and freestanding groups are compared with theoretical estimates. The influence of eccentricity and inclination of the load on the ultimate bearing capacity can be represented by simple interaction relationships between the ultimate loads and moments and between the axial and normal components of the ultimate load. The effect of a pile cap resting on the soil in piled foundations and the influence of pile flexibility on the ultimate load are examined briefly. Key words: bearing capacity, clay, eccentric load, inclined load, pile groups, pile–soil interaction, rigid piles, ultimate load, ultimate moment.


Sign in / Sign up

Export Citation Format

Share Document