scholarly journals Zinc-fortification restores gut nitric oxide without expression of inducible nitric oxide synthase gene in enterotoxigenic E. coli-induced diarrhea in zinc-deficient rats

2021 ◽  
pp. e00867
Author(s):  
Ebuka E. David ◽  
Muhammad A. Yameen ◽  
Ikechuku O. Igwenyi ◽  
Chidinma N. David
2008 ◽  
Vol 295 (1) ◽  
pp. L96-L103 ◽  
Author(s):  
Viktor Brovkovych ◽  
Xiao-Pei Gao ◽  
Evan Ong ◽  
Svitlana Brovkovych ◽  
Marie-Luise Brennan ◽  
...  

The myeloperoxidase (MPO)-hydrogen peroxide-halide system is an efficient oxygen-dependent antimicrobial component of polymorphonuclear leukocyte (PMN)-mediated host defense. However, MPO deficiency results in few clinical consequences indicating the activation of compensatory mechanisms. Here, we determined possible mechanisms protecting the host using MPO−/−mice challenged with live gram-negative bacterium Escherichia coli. We observed that MPO−/−mice unexpectedly had improved survival compared with wild-type (WT) mice within 5–12 h after intraperitoneal E. coli challenge. Lungs of MPO−/−mice also demonstrated lower bacterial colonization and markedly attenuated increases in microvascular permeability and edema formation after E. coli challenge compared with WT. However, PMN sequestration in lungs of both groups was similar. Basal inducible nitric oxide synthase (iNOS) expression was significantly elevated in lungs and PMNs of MPO−/−mice, and NO production was increased two- to sixfold compared with WT. Nitrotyrosine levels doubled in lungs of WT mice within 1 h after E. coli challenge but did not change in MPO−/−mice. Inhibition of iNOS in MPO−/−mice significantly increased lung edema and reduced their survival after E. coli challenge, but iNOS inhibitor had the opposite effect in WT mice. Thus augmented iNOS expression and NO production in MPO−/−mice compensate for the lack of HOCl-mediated bacterial killing, and the absence of MPO-derived oxidants mitigates E. coli sepsis-induced lung inflammation and injury.


2006 ◽  
Vol 175 (4S) ◽  
pp. 96-96
Author(s):  
Masayoshi Nomura ◽  
Hisae Nishii ◽  
Masato Tsutsui ◽  
Naohiro Fujimoto ◽  
Tetsuro Matsumoto

2020 ◽  
Vol 19 (30) ◽  
pp. 2795-2804 ◽  
Author(s):  
Ricardo Pereira Rodrigues ◽  
Juliana Santa Ardisson ◽  
Rita de Cássia Ribeiro Gonçalves ◽  
Tiago Branquinho Oliveira ◽  
Vinicius Barreto da Silva ◽  
...  

Background: Helicobacter pylori is a gram-negative bacterium related to chronic gastritis, peptic ulcer and gastric carcinoma. During its infection process, promotes excessive inflammatory response, increasing the release of reactive species and inducing the production of pro-inflammatory mediators. Inducible Nitric Oxide Synthase (iNOS) plays a crucial role in the gastric carcinogenesis process and a key mediator of inflammation and host defense systems, which is expressed in macrophages induced by inflammatory stimuli. In chronic diseases such as Helicobacter pylori infections, the overproduction of NO due to the prolonged induction of iNOS is of major concern. Objective: In this sense, the search for potential iNOS inhibitors is a valuable strategy in the overall process of Helicobacter pylori pathogeny. Method: In silico techniques were applied in the search of interesting compounds against Inducible Nitric Oxide Synthase enzyme in a chemical space of natural products and derivatives from the Analyticon Discovery databases. Results: The five compounds with the best iNOS inhibition profile were selected for activity and toxicity predictions. Compound 9 (CAS 88198-99-6) displayed significant potential for iNOS inhibition, forming hydrogen bonds with residues from the active site and an ionic interaction with heme. This compound also displayed good bioavailability and absence of toxicity/or from its probable metabolites. Conclusion: The top-ranked compounds from the virtual screening workflow show promising results regarding the iNOS inhibition profile. The results evidenced the importance of the ionic bonding during docking selection, playing a crucial role in binding and positioning during ligand-target selection for iNOS.


Sign in / Sign up

Export Citation Format

Share Document