inos expression
Recently Published Documents


TOTAL DOCUMENTS

721
(FIVE YEARS 82)

H-INDEX

55
(FIVE YEARS 5)

2021 ◽  
Vol 281 ◽  
pp. 114575
Author(s):  
Zhongmin Zhang ◽  
Li Li ◽  
Guoxin Huang ◽  
Tong Zhou ◽  
Xinyue Zhang ◽  
...  

Author(s):  
Sheryl Erica Fernandes ◽  
Deepak Kumar Saini

The cellular changes occurring due to senescence like proliferation arrest, increase in free radical levels, and secretion of pro-inflammatory cytokines have been well studied, but its associated alteration in intracellular signalling networks has been scarcely explored. In this study, we examine the roles of three major kinases viz. p38 MAPK, ERK, and STAT3 in regulating iNOS expression and thereby the levels of the free radical Nitric oxide in senescent cells. Our study revealed that these kinases could differentially regulate iNOS in senescent cells compared to non-senescent cells. Further, we tested the physiological relevance of these alterations with Salmonella infection assays and established an inter-regulatory network between these kinases unique to infected senescent cells. Overall, our findings show how key signalling networks may be rewired in senescent cells rendering them phenotypically different.


2021 ◽  
Vol 12 ◽  
Author(s):  
Hui-hui Zhou ◽  
Ye-ming Zhang ◽  
Sheng-peng Zhang ◽  
Qi-xiang Xu ◽  
Ya-qing Tian ◽  
...  

Background: Accumulating evidence suggests that the polymerase I and transcript release factor (PTRF), a key component of the caveolae structure on the plasma membrane, plays a pivotal role in suppressing the progression of colorectal cancers. However, the role of PTRF in the development of functional gastrointestinal (GI) disorders remains unclear. Post-infectious irritable bowel syndrome (PI-IBS) is a common functional GI disorder that occurs after an acute GI infection. Here, we focused on the role of PTRF in the occurrence of PI-IBS and investigated the underlying mechanisms.Methods: Lipopolysaccharide (LPS) (5 μg/ml) was used to induce inflammatory injury in human primary colonic epithelial cells (HCoEpiCs). Furthermore, a rat model of PI-IBS was used to study the role of PTRF. Intestinal sensitivity was assessed based on the fecal water content. A two-bottle sucrose intake test was used to evaluate behavioral changes. Furthermore, shRNA-mediated knockdown of PTRF was performed both in vitro and in vivo. We detected the expression of PTRF in colonic mucosal tissues through immunohistochemistry (IHC), western blotting (WB), and immunofluorescence (IF) analysis. Luciferase activity was quantified using a luciferase assay. Co-localization of PTRF and Toll-like receptor 4 (TLR4) was detected using IF analysis. The activation of the signaling pathways downstream of TLR4, including the iNOs, p38, extracellular signal-regulated kinase (ERK), and c-Jun N-terminal kinase (JNK) pathways, was detected via WB. The levels of NO, IL-1β, IL-6, and TNF-α were measured using enzyme-linked immunosorbent assays.Results: LPS significantly induced PTRF expression and signaling downstream of TLR4, including p38, ERK, and JNK pathways, in HCoEpiCs. Moreover, shRNA-mediated knockdown of PTRF in HCoEpiCs significantly decreased the phosphorylation of JNK, ERK, and p38 and iNOS expression. In PI-IBS rats, the lack of PTRF not only reduced fecal water content and suppressed depressive behavior but also increased the body weight. Furthermore, we found a strong co-localization pattern for PTRF and TLR4. Consistently, the lack of PTRF impaired TLR4 signaling, as shown by the decreased levels of p-JNK, p-ERK, and p-p38, which are upstream factors involved in iNOS expression.Conclusion: PTRF promoted PI-IBS and stimulated TLR4 signaling both in vitro and in vivo. The results of this study not only enlighten the pathogenesis of PI-IBS but also help us understand the biological activity of PTRF and provide an important basis for the clinical treatment of PI-IBS by targeting PTRF.


Nutrients ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 3043
Author(s):  
Anita Panek-Krzyśko ◽  
Monika Stompor-Gorący

Prenylflavonoids are widespread in nature. Plants are valuable sources of natural polyphenolic compounds with isoprenyl groups, which include flavones, flavanones, chalcones and aurones. They can be found in flowers, bark and stems. One of the most important compounds found in the bark of white mulberry (Morus alba) is morusin, a prenylated flavone with interesting pro-health properties. The research carried out so far revealed that morusin has antioxidant, antitumor, anti-inflammatory and anti-allergic activity. Moreover, its neuroprotective and antihyperglycemic properties have also been confirmed. Morusin suppresses the growth of different types of tumors, including breast cancer, glioblastoma, pancreatic cancer, hepatocarcinoma, prostate cancer, and gastric cancer. It also inhibits the inflammatory response by suppressing COX activity and iNOS expression. Moreover, an antimicrobial effect against Gram-positive bacteria was observed after treatment with morusin. The objective of this review is to summarize the current knowledge about the positive effects of morusin on human health in order to facilitate future study on the development of plant polyphenolic drugs and nutraceutics in the group of prenylflavones.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Wei Chu ◽  
Lirong Cao ◽  
Gui Daokun ◽  
Jiali Zhao

Inducible nitric oxide synthase (iNOS), accompanied with protumor and antitumor activity, has been studied in multiple cancers. However, the role of iNOS expression in osteosarcoma (OS) is far from being fully understood. In present work, iNOS levels were detected in OS tissues and cell lines. Colony formation assay, Transwell assay, and fow cytometer were used to assess proliferation, migration, invasion, and apoptosis abilities in vitro after iNOS inhibition. Western blotting determined the expressions of iNOS, MMP2, MMP9, C-MYC, Ki67, PCNA, and β-catenin. Mice transfected with OS cells were to evaluate tumor formation. IHC assay was to evaluate the expressions of iNOS and β-catenin in mice. The results showed that iNOS was upregulated in both OS tissues and cells compared with that in matched normal tissues or cells. And we found that proliferation, migration, and invasion numbers of OS cells were decreased, and apoptosis numbers of OS cells were increased after iNOS inhibition. MMP2, MMP9, C-MYC, Ki67, and PCNA levels were also reduced in OS cells treated with iNOS inhibition. Else, iNOS inhibition would suppress β-catenin expression in OS cells to regulate MMP2, MMP9, C-MYC, Ki67, and PCNA expressions. In addition, tumor formation, iNOS expression, and β-catenin expression were inhibited in mice transplanted with iNOS knockout OS cells. These results indicated that iNOS might be a potential therapeutic target for OS.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Rosangela Montanaro ◽  
Alessio D’Addona ◽  
Andrea Izzo ◽  
Carlo Ruosi ◽  
Vincenzo Brancaleone

AbstractClodronate is a bisphosphonate agent commonly used as anti-osteoporotic drug. Throughout its use, additional anti-inflammatory and analgesic properties have been reported, although the benefits described in the literature could not solely relate to their inhibition of bone resorption. Thus, the purpose of our in vitro study is to investigate whether there are underlying mechanisms explaining the anti-inflammatory effect of clodronate and possibly involving hydrogen sulphide (H2S). Immortalised fibroblast-like synoviocyte cells (K4IM) were cultured and treated with clodronate in presence of TNF-α. Clodronate significantly modulated iNOS expression elicited by TNF-α. Inflammatory markers induced by TNF-α, including IL-1, IL-6, MCP-1 and RANTES, were also suppressed following administration of clodronate. Furthermore, the reduction in enzymatic biosynthesis of CSE-derived H2S, together with the reduction in CSE expression associated with TNF-α treatment, was reverted by clodronate, thus rescuing endogenous H2S pathway activity. Clodronate displays antinflammatory properties through the modulation of H2S pathway and cytokines levels, thus assuring the control of the inflammatory state. Although further investigation is needed to stress out how clodronate exerts its control on H2S pathway, here we showed for the first the involvement of H2S in the additive beneficial effects observed following clodronate therapy.


2021 ◽  
Author(s):  
Denise Belgorosky ◽  
Yanina Langle ◽  
Julie Girouard ◽  
Jovane Hamelin-Morrissette ◽  
Lina Marino ◽  
...  

2021 ◽  
Vol 6 ◽  
pp. 83
Author(s):  
Gulab Fatima Rani ◽  
Helen Ashwin ◽  
Najmeeyah Brown ◽  
Ian S. Hitchcock ◽  
Paul M. Kaye

Background: Polyparasitism is commonplace in countries where endemicity for multiple parasites exists, and studies in animal models of coinfection have made significant inroads into understanding the impact of often competing demands on the immune system. However, few studies have addressed how previous exposure to and treatment for one infection impacts a subsequent heterologous infection.   Methods: We used a C57BL/6 mouse model of drug-treated Leishmania donovani infection followed by experimental Plasmodium chabaudi AS malaria, focusing on hematological dysfunction as a common attribute of both infections. We measured parasite burden, blood parameters associated with anemia and thrombocytopenia, and serum thrombopoietin. In addition, we quantified macrophage iNOS expression through immunohistological analysis of the liver and spleen.   Results: We found that the thrombocytopenia and anemia that accompanies primary L. donovani infection was rapidly reversed following single dose AmBisome® treatment, along with multiple other markers associated with immune activation (including restoration of tissue microarchitecture and reduced macrophage iNOS expression). Compared to naive mice, mice cured of previous L. donovani infection showed comparable albeit delayed clinical responses (including peak parasitemia and anemia) to P. chabaudi AS infection. Thrombocytopenia was also evident in these sequentially infected mice, consistent with a decrease in circulating levels of thrombopoietin. Architectural changes to the spleen were also comparable in sequentially infected mice compared to those with Plasmodium infection alone. Conclusions: Our data suggest that in this sequential infection model, previously-treated L. donovani infection has limited impact on the subsequent development of Plasmodium infection, but this issue deserves further attention in models of more severe disease or through longitudinal population studies in humans.


Sign in / Sign up

Export Citation Format

Share Document