Partial rootzone drying (PRD) and regulated deficit irrigation (RDI) effects on stomatal conductance, growth, photosynthetic capacity, and water-use efficiency of papaya

2015 ◽  
Vol 183 ◽  
pp. 13-22 ◽  
Author(s):  
Roberta Samara Nunes de Lima ◽  
Fábio Afonso Mazzei Moura de Assis Figueiredo ◽  
Amanda Oliveira Martins ◽  
Bruna Corrêa da Silva de Deus ◽  
Tiago Massi Ferraz ◽  
...  
2009 ◽  
Vol 61 (4) ◽  
pp. 801-810 ◽  
Author(s):  
Sladjana Savic ◽  
F. Liu ◽  
Radmila Stikic ◽  
S.E. Jacobsen ◽  
C.R. Jensen ◽  
...  

The effects of partial rootzone drying (PRD), deficit irrigation (DI), and full irrigation (FI) on tomato physiology were investigated. In PRD and DI plants, leaf water potential values and stomatal conductance were significantly lower, while xylem ABA concentration was greater compared to FI plants. Photosynthesis was similar for all treatments. Water use efficiency was improved by PRD and DI, which reduced fruit dry weight, but had no effect on dry weight of leaves and stems.


OENO One ◽  
2001 ◽  
Vol 35 (3) ◽  
pp. 129 ◽  
Author(s):  
Peter R. Dry ◽  
B. R. Loveys ◽  
M. G. Mccarthy ◽  
Manfred Stoll

<p style="text-align: justify;">Regulated Deficit Irrigation (RDI) and Partial Rootzone Drying (PRD) are examples of strategie irrigation management. They have been successfully adopted for winegrape production in Australia with the aim of controlling vegetative growth to produce 'balanced' vines, and to improve both water-use efficiency (measured as tonnes of fruit per ML of irrigation water applied) and fruit quality for winemaking. This paper will outline some of the physiological principles that underpin these strategies and provide details of experimental and commercial experience in Australian vineyards.</p>


Sign in / Sign up

Export Citation Format

Share Document