regulated deficit irrigation
Recently Published Documents


TOTAL DOCUMENTS

384
(FIVE YEARS 116)

H-INDEX

37
(FIVE YEARS 8)

2022 ◽  
Vol 260 ◽  
pp. 107280
Author(s):  
B.C. Léllis ◽  
A. Martínez-Romero ◽  
R.C. Schwartz ◽  
J.J. Pardo ◽  
J.M. Tarjuelo ◽  
...  

Water ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 3510
Author(s):  
Chenli Zhou ◽  
Hengjia Zhang ◽  
Fuqiang Li ◽  
Zeyi Wang ◽  
Yucai Wang

Water resource scarcity is an important factor restricting the sustainable development of agriculture in Northwest China. Regulated deficit irrigation can conserve water while maintaining high crop yields. A field experiment was conducted to evaluate the effect of regulated deficit irrigation on the photosynthetic characteristics, yield, and water use efficiency of woad (Isatis indigotica) under mulched drip irrigation from 2017 to 2019 in a cold and arid area of the Hexi Oasis irrigation region, China. Sufficient water was supplied during the seedling stage. The control consisted of adequate water supplied during the other growth stages, whereas mild, moderate, and severe water deficits were imposed during the vegetative growth period, and a mild and moderate water deficit was imposed during the fleshy root growth stage. A mild water deficit was imposed during the fleshy root maturity period. The results showed that the net photosynthetic rate, transpiration rate, and stomatal conductance under moderate and severe water deficit were significantly (p < 0.05) decreased compared with the control, respectively, during the vegetative growth period. The economic yield of mild water deficit during the vegetative growth and mild water deficit during the vegetative growth and fleshy root growth did not differ significantly (p > 0.05) from that of the control. Other treatments caused a 6.74–17.74% reduction in the economic yield of woad. The water use efficiency and irrigation water use efficiency were the highest in the mild water deficit during the vegetative growth period and the fleshy root growth period. Therefore, the application of a continuous mild deficit from the vegetative growth stage to the fleshy root growth stage with sufficient water supplied during other growth periods is recommended as the optimal irrigation regime for maximum yield, water use efficiency, and water-saving of woad.


Agronomy ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2486
Author(s):  
José Enrique González-Zamora ◽  
Cristina Ruiz-Aranda ◽  
María Rebollo-Valera ◽  
Juan M. Rodríguez-Morales ◽  
Salvador Gutiérrez-Jiménez

Irrigated almond orchards in Spain are increasing in acreage, and it is pertinent to study the effect of deficit irrigation on the presence of pests, plant damage, and other arthropod communities. In an orchard examined from 2017 to 2020, arthropods and diseases were studied by visual sampling under two irrigation treatments (T1, control and T2, regulated deficit irrigation (RDI)). Univariate analysis showed no influence of irrigation on the aphid Hyalopterus amygdali (Blanchard) (Hemiptera: Aphididae) population and damage, but Tetranychus urticae Koch (Trombidiformes: Tetranychidae) damage on leaves was significantly less (50–60% reduction in damaged leaf area) in the T2 RDI treatment compared to the full irrigation T1 control in 2019 and 2020. Typhlocybinae (principal species Asymmetrasca decedens (Paoli) (Hemiptera: Cicadellidae)) population was also significantly lower under T2 RDI treatment. Chrysopidae and Phytoseiidae, important groups in the biological control of pests, were not affected by irrigation treatment. The most important diseases observed in the orchard were not, in general, affected by irrigation treatment. The multivariate principal response curves show significant differences between irrigation strategies in 2019 and 2020. In conclusion, irrigation schemes with restricted water use (such as T2 RDI) can help reduce the foliar damage of important pests and the abundance of other secondary pests in almond orchards.


2021 ◽  
Vol 258 ◽  
pp. 107172
Author(s):  
Gaetano Alessandro Vivaldi ◽  
Salvatore Camposeo ◽  
Cristina Romero-Trigueros ◽  
Francisco Pedrero ◽  
Gabriele Caponio ◽  
...  

Agronomy ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2316
Author(s):  
Yang Wu ◽  
Zhi Zhao ◽  
Feng Zhao ◽  
Xiaolei Cheng ◽  
Pingping Zhao ◽  
...  

A field experiment was conducted to evaluate the effects of regulated deficit irrigation (RDI) on the fine root redistribution of mature pear trees in 2009 and 2010. The experiment consisted of four RDI treatments: MRDI-1 and SRDI-1, in which the trees received irrigation replacing 60% and 40% of pan evaporation (Ep) during Stage 1 (cell division stage), and MRDI-1+2 and SRDI-1+2, in which the trees received irrigation replacing 60% and 40% of Ep during Stage 1+2 (cell division and slow shoot growth stage). All the RDI-treated trees received irrigation replacing 80% of Ep (full irrigation) in other stages, and the control trees were fully irrigated during the whole growth season. The results showed that the fine root length density (RLD) of mature pear trees was reduced by water stress. The resumption of full irrigation boosted fine root growth. The RLD of the SRDI-1-treated trees in the irrigated zones recovered in early July, they maintained water and nutrient absorption during the fruit enlargement stage, and the final fruit yield was significantly improved. The RLD of trees in the irrigated zones with MRDI-1 and MRDI-1+2 recovered in July and September, respectively, but there were no significant differences in fruit yield between the MRDI-1, MRDI-1+2, and the control. This indicates that the fruit yield was not negatively or positively impacted by the redistribution of moderate water stress applied during either Stage 1 or Stage 1+2.


Sign in / Sign up

Export Citation Format

Share Document