Role of diaphragmatic breathing and aerobic exercise in improving pulmonary function and maximal oxygen consumption in asthmatics

2010 ◽  
Vol 25 (3) ◽  
pp. 139-145 ◽  
Author(s):  
I. Shaw ◽  
B.S. Shaw ◽  
G.A. Brown
2019 ◽  
Vol 25 (1) ◽  
pp. 20-23 ◽  
Author(s):  
Mateus Ahlert ◽  
Fernando Matzenbacher ◽  
José Carlos dos Santos Albarello ◽  
Gustavo Henrique Halmenschlager

ABSTRACT Objectives: The objective of this study was to compare EPOC - excess post-exercise oxygen consumption and recovery energy expenditure between high intensity interval aerobic exercise (HIIT) and continuous aerobic exercise in adult amateur runners. Methods: The study included 10 runners, with a mean age of 35.7 ± 5.87 years, height 1.69 ± 0.11 m; body mass 74.13 ± 11.26 kg; fat percentage 19.31 ± 4.27% and maximal oxygen consumption (VO2max) of 3.50 ± 0.64 l/kg/min-1. The continuous aerobic exercise protocol consisted of 20 minutes of running with intensity of 70-75% HRmax. Two 20-second cycles of 8 sprints were performed for HIIT at the highest possible speed, with 10 seconds of rest and a 3-minute interval between cycles. The sample group performed the two protocols at least 48 hours and at most one week apart. EPOC was observed using ergospirometry after the running protocols, and mean consumption was analyzed between 25-30 minutes after exercise. Oxygen consumption at 9-10 minutes was used for resting consumption. The study has a cross-sectional experimental design. Results: Oxygen consumption of 0.57 ± 0.29l/kg/min1 and energy expenditure of 2.84 ± 1.44 kcal/min were observed for continuous aerobic exercise, with values of 0.61 ± 0.62 l/kg/min−1 and 3.06 ± 1.10 kcal/min respectively (p <0.05) for HIIT. Conclusion: The protocols performed did not show a statistically significant difference in terms of EPOC and energy expenditure, but the performance of HIIT increased lipid metabolism for exercise recovery, which may favor the weight loss process. Moreover, this activity model takes up less time. Level of evidence I, randomized clinical trial.


2009 ◽  
Vol 41 ◽  
pp. 319
Author(s):  
Daniel P. Wilhite ◽  
Abigail S. Laymon ◽  
James M. McKenzie ◽  
Elizabeth A. Lundgren ◽  
Robert F. Chapman

2003 ◽  
Vol 15 (1) ◽  
pp. 20-26 ◽  
Author(s):  
Steven J. Prior ◽  
James M. Hagberg ◽  
Dana A. Phares ◽  
Michael D. Brown ◽  
Liane Fairfull ◽  
...  

Hypoxia-inducible factor 1 (HIF1) is a DNA transcription factor composed of two subunits, one of which is regulated by hypoxia (HIF1α, encoded by HIF1A). Genes regulated by HIF1 are involved in the processes of angiogenesis, erythropoiesis, and metabolism, making HIF1A a candidate gene in establishing maximal oxygen consumption (V˙o2 max) before and after aerobic exercise training. The purpose of the present study was to screen HIF1A for sequence variation and determine whether such variation is associated with V˙o2 max before and after aerobic exercise training. A total of 233 Caucasian and African-American subjects were available for screening of HIF1A and determination of allele frequencies, with 155 of those subjects used to study V˙o2 max in relation to identified variants. We measured V˙o2 max before and after 24 wk of aerobic exercise training. Screening revealed several rare and common polymorphisms in HIF1A with race-specific allele frequencies. African Americans with AT or TT genotype at the A−2500T locus exhibited significantly lower baseline V˙o2 max compared with those of AA genotype (21.9 ± 0.99 vs. 25.1 ± 1.0, P = 0.03). An age by P582S (C/T) genotype interaction was observed in Caucasian subjects, such that those of CT or TT genotype exhibited significantly lower change in V˙o2 max after training than those of CC genotype when compared at ages 65 and 60 yr, but not at age 55 yr. No other significant differences were noted among genotype groups at the A−2500T, P582S, or T+140C sites. Based on these findings, we conclude that HIF1A sequence variation is associated with V˙o2 max before and after aerobic exercise training in older humans.


2019 ◽  
Vol 149 (2) ◽  
pp. 231-239 ◽  
Author(s):  
Laura M Pompano ◽  
Jere D Haas

ABSTRACT Background Iron deficiency persists as the most common micronutrient deficiency globally, despite having known detrimental effects on physical performance. Although iron supplementation and aerobic exercise have been examined individually and are known to improve physical performance, the impact of simultaneous iron supplementation and aerobic training remains unclear. Objective The aim of this study was to examine the individual and combined effects of iron supplementation and aerobic training on improving maximal and submaximal physical performance in iron-depleted, nonanemic (IDNA) women. We hypothesized that women receiving iron would improve their endurance performance but not their estimated maximal oxygen consumption (eVO2max). Methods Seventy-three sedentary, previously untrained IDNA (serum ferritin <25 µg/L and hemoglobin >110 g/L) women aged 18–26 y with a body mass index (kg/m2) of 17–25 participated in a double-blind, 8-wk, randomized controlled trial with a 2 × 2 factorial design including iron supplementation (42 mg elemental Fe/d) or placebo and aerobic exercise training (5 d/wk for 25 min at 75–85% of age-predicted maximum heart rate) or no training. Linear models were used to examine relations between training, supplement, and changes in the primary outcomes of observed maximal oxygen consumption (VO2peak) and eVO2max and ventilatory threshold (absolute oxygen consumption and percentage of maximum). Re-evaluation of a published meta-analysis was used to compare effects of iron supplementation on maximal oxygen consumption (VO2max) and VO2peak. Results There were significant training-by-supplement interactions for VO2peak, volume of oxygen consumption at the ventilatory threshold, and the percentage of eVO2max where the threshold occurred, with the iron-untrained group performing better than the placebo-untrained group. There was no beneficial effect of iron supplementation for VO2max (mean difference: 0.53; 95% CI: −0.75, 1.81; P = 0.42), but a significant benefit was observed for VO2peak (mean difference: 1.87; 95% CI: 0.15, 3.60; P = 0.03). Conclusions Iron supplementation increases endurance performance at submaximal and maximal (VO2peak) exercise intensities in IDNA women. However, increasing iron status does not increase eVO2max. This trial was registered at clinicaltrials.gov as NCT03002090.


2011 ◽  
Vol 6 (3) ◽  
pp. 358-366 ◽  
Author(s):  
Vinícius F. Milanez ◽  
Rafael E. Pedro ◽  
Alexandre Moreira ◽  
Daniel A. Boullosa ◽  
Fuad Salle-Neto ◽  
...  

Purpose:The aim of this study was to verify the influence of aerobic fitness (VO2max) on internal training loads, as measured by the session rating of perceived exertion (session-RPE) method.Methods:Nine male professional outfeld futsal players were monitored for 4 wk of the in-season period with regards to the weekly accumulated session-RPE, while participating in the same training sessions. Single-session-RPE was obtained from the product of a 10-point RPE scale and the duration of exercise. Maximal oxygen consumption was determined during an incremental treadmill test.Results:The average training load throughout the 4 wk period varied between 2,876 and 5,035 arbitrary units. Technical-tactical sessions were the predominant source of loading. There was a significant correlation between VO2max (59.6 ± 2.5 mL·kg–1 ·min–1) and overall training load accumulated over the total period (r = –0.75).Conclusions:The VO2max plays a key role in determining the magnitude of an individual’s perceived exertion during futsal training sessions.


2006 ◽  
Vol 290 (5) ◽  
pp. H1848-H1855 ◽  
Author(s):  
Steven J. Prior ◽  
James M. Hagberg ◽  
Chad M. Paton ◽  
Larry W. Douglass ◽  
Michael D. Brown ◽  
...  

In its role as an endothelial cell proliferation and migration factor, vascular endothelial growth factor (VEGF) can affect peripheral circulation and therefore impact maximal oxygen consumption (V̇o2 max). Because of the role of VEGF, and because variation in the VEGF gene has the ability to alter VEGF gene expression and VEGF protein level, we hypothesized that VEGF gene polymorphisms are related to VEGF gene expression in human myoblasts and V̇o2 maxbefore and after aerobic exercise training. We analyzed the effects of the VEGF −2578/−1154/−634 promoter region haplotype on VEGF gene expression by using a luciferase reporter assay in cultured human myoblasts and found that the AAG and CGC haplotypes resulted in significantly higher hypoxia-stimulated VEGF gene expression than the AGG and CGG haplotypes. Consistent with these results, we found that individuals with at least one copy of the AAG or CGC haplotype had higher V̇o2 maxbefore and after aerobic exercise training than did subjects with only the AGG and/or CGG haplotype. In conclusion, we found that VEGF −2578/−1154/−634 haplotype impacts VEGF gene expression in human myoblasts and is associated with V̇o2 max. These results have potential implications for aerobic exercise training and may prove relevant in the study of pathological conditions that can be affected by angiogenesis, such as coronary artery disease and peripheral artery disease.


2003 ◽  
Vol 35 (Supplement 1) ◽  
pp. S377
Author(s):  
S J. Prior ◽  
D A. Phares ◽  
L Fairfull ◽  
R E. Ferrell ◽  
J M. Hagberg ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document