Impact of urbanization-related land use land cover changes and urban morphology changes on the urban heat island phenomenon

2018 ◽  
Vol 635 ◽  
pp. 1467-1476 ◽  
Author(s):  
Xuefan Zhou ◽  
Hong Chen
2017 ◽  
Vol 9 (2) ◽  
pp. 312 ◽  
Author(s):  
Chaobin Yang ◽  
Xingyuan He ◽  
Fengqin Yan ◽  
Lingxue Yu ◽  
Kun Bu ◽  
...  

2021 ◽  
Vol 879 (1) ◽  
pp. 012010
Author(s):  
A S Liong ◽  
N Nasrullah ◽  
B Sulistyantara

Abstract Makassar City, the capital of South Sulawesi Province, is the largest metropolitan city in the eastern part of Indonesia, with a population development rate of 1.19% in 2019. An increase in population impacts city development and results in land use and land cover changes. Changes in land use and land cover pattern bring impact to Land Surface Temperature (LST). This study examines land cover’s influence on land surface temperature in Makassar City using multi-temporal satellite data. Land cover and LST data were extracted using Landsat 7 and Landsat 8 over the period of 1999, 2009, and 2019. The result shows that the highest increase in land cover changed was a built-up area of 13.1%, and vegetation decreased by 8.6%. The change in average LST value in the last 20 years was 0.39°C with the highest LST distribution areas was in 30-32°C and 32-34°C classes. The result of LST analysis in 2019 shows that the Urban Heat Island phenomenon has occurred in Makassar in the downtown area and several areas with the densely built-up area. With an overview of the UHI phenomenon in Makassar, the government is expected to raise public awareness of this phenomenon so that preventive actions can be taken, so the effects of UHI do not spread more widely.


Energies ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1678 ◽  
Author(s):  
Yan-jun Guo ◽  
Jie-jie Han ◽  
Xi Zhao ◽  
Xiao-yan Dai ◽  
Hao Zhang

In this study, 167 land parcels of downtown Shanghai, China, were used to investigate the relationship between parcel-level land use/land cover (LULC) components and associated summertime intra-surface urban heat island (SUHI) effect, and further analyze the potential of mitigating summertime intra-SUHI effect through the optimized LULC components, by integrating a thermal sharpening method combining the Landsat-8 thermal band 10 data and high-resolution Quickbird image, statistical analysis, and nonlinear programming with constraints. The results show the remarkable variations in intra-surface urban heat island (SUHI) effect, which was measured with the mean parcel-level blackbody sensible heat flux in kW per ha (Mean_pc_BBF). Through measuring the relative importance of each specific predictor in terms of their contributions to changing Mean_pc_BBF, the influence of parcel-level LULC components on excess surface flux of heat energy to the atmosphere was estimated using the partial least square regression (PLSR) model. Analysis of the present and optimized parcel-level LULC components and their contribution to the associated Mean_pc_BBF were comparable between land parcels with varying sizes. Furthermore, focusing on the gap between the present and ideally optimized area proportions of parcel-level LULC components towards minimizing the Mean_pc_BBF, the uncertainties arising from the datasets and methods, as well as the implications for sustainable land development and mitigating the UHI effect were discussed.


Sign in / Sign up

Export Citation Format

Share Document