scholarly journals Biochar bound urea boosts plant growth and reduces nitrogen leaching

2020 ◽  
Vol 701 ◽  
pp. 134424 ◽  
Author(s):  
Wei Shi ◽  
Yanyan Ju ◽  
Rongjun Bian ◽  
Lianqing Li ◽  
Stephen Joseph ◽  
...  
HortScience ◽  
2019 ◽  
Vol 54 (12) ◽  
pp. 2224-2230
Author(s):  
Sueyde Fernandes de Oliveira Braghin ◽  
Simone C. Mello ◽  
Jéssika Angelotti-Mendonça ◽  
Keigo Minami ◽  
Yuncong C. Li

Fertilizer management is an essential step in the production process, as it allows the plant to use its productive capacity to the fullest extent possible. Researchers have tested maximum nutrient use with reduced losses to the environment aiming to increase productivity with fewer environmental impacts. This study compared the effects of controlled-release fertilizers (CRFs) with water-soluble fertilizer (WSF) and clear water (control) on the growth and nutrient uptake of croton (Codiaeum variegatum L.) and nitrogen leaching. The experiment was conducted with three replications and six treatments: two rates (1.5 g and 3.0 g per liter of substrate) of two CRFs [Osmocote Plus (15% N, 3.93% P, and 9.96% K) and Basacote (15% N, 3.49% P, and 9.96% K)], WSF, and clean water as control. All CRFs were applied before planting and WSF was supplied as nutrient solution through automated moisture sensor activated irrigation system. Plant growth (number of leaves, leaf area, stem height, root volume, and shoot and root dry weights) and total nutrient contents in the leaf tissue were evaluated every 30 days. Electrical conductivity (EC), pH, nitrate, ammonium, and total nitrogen contents were measured in the leached solution. Indeed, results showed that CRFs at a low rate provided similar development and quality of croton plants compared with WSF. Plant growth indicators were similar until 90 days after transplanting (DAT). After that, at 150 DAT, the highest values to number of leaves and leaf area occurred with WSF and with the lowest CRF rate as compared with the other treatments and control. The highest root volume was found with the WSF, which resulted in larger roots compared with the other treatments. These results showed WSF can be replaced by CRFs at low rates on croton growth. Moreover, according to the visual scale, the best treatments were WSF and Basacote at the low rate, where plants were bright, with multicolored leaves with prominent orange shades. However, CRFs maintained pH and EC within the recommended range for the growth of croton and reduced the nitrogen leaching from the pots.


2015 ◽  
Vol 58 ◽  
pp. 61-70 ◽  
Author(s):  
Paul B. Larsen

Ethylene is the simplest unsaturated hydrocarbon, yet it has profound effects on plant growth and development, including many agriculturally important phenomena. Analysis of the mechanisms underlying ethylene biosynthesis and signalling have resulted in the elucidation of multistep mechanisms which at first glance appear simple, but in fact represent several levels of control to tightly regulate the level of production and response. Ethylene biosynthesis represents a two-step process that is regulated at both the transcriptional and post-translational levels, thus enabling plants to control the amount of ethylene produced with regard to promotion of responses such as climacteric flower senescence and fruit ripening. Ethylene production subsequently results in activation of the ethylene response, as ethylene accumulation will trigger the ethylene signalling pathway to activate ethylene-dependent transcription for promotion of the response and for resetting the pathway. A more detailed knowledge of the mechanisms underlying biosynthesis and the ethylene response will ultimately enable new approaches to be developed for control of the initiation and progression of ethylene-dependent developmental processes, many of which are of horticultural significance.


1993 ◽  
Vol 89 (1) ◽  
pp. 33-39 ◽  
Author(s):  
Jeff S. Kuehny ◽  
Mary C. Halbrooks

1994 ◽  
Vol 90 (4) ◽  
pp. 739-747 ◽  
Author(s):  
Diana Lee ◽  
Barbara A. Moffatt

Sign in / Sign up

Export Citation Format

Share Document