Mechanisms of ethylene biosynthesis and response in plants

2015 ◽  
Vol 58 ◽  
pp. 61-70 ◽  
Author(s):  
Paul B. Larsen

Ethylene is the simplest unsaturated hydrocarbon, yet it has profound effects on plant growth and development, including many agriculturally important phenomena. Analysis of the mechanisms underlying ethylene biosynthesis and signalling have resulted in the elucidation of multistep mechanisms which at first glance appear simple, but in fact represent several levels of control to tightly regulate the level of production and response. Ethylene biosynthesis represents a two-step process that is regulated at both the transcriptional and post-translational levels, thus enabling plants to control the amount of ethylene produced with regard to promotion of responses such as climacteric flower senescence and fruit ripening. Ethylene production subsequently results in activation of the ethylene response, as ethylene accumulation will trigger the ethylene signalling pathway to activate ethylene-dependent transcription for promotion of the response and for resetting the pathway. A more detailed knowledge of the mechanisms underlying biosynthesis and the ethylene response will ultimately enable new approaches to be developed for control of the initiation and progression of ethylene-dependent developmental processes, many of which are of horticultural significance.

2019 ◽  
Author(s):  
Xin Zhao ◽  
Ying Wang ◽  
Wen-Fang Li ◽  
Meng-Fei Li ◽  
Zong-Huan Ma ◽  
...  

Abstract Background The carbon can be converted into sugar which is not only important for plant growth and development, but also for plant signal transduction, especially in plant hormone response. The objective of this work was to build available genomic and proteomic resource to investigate the molecular mechanisms of exogenous carbon regulating plant growth and development. Results Grape (Vitis vinifera L. cv. ‘Pinot Noir’) plantlets cultured with exogenous carbon (2% sucrose, 1000 μmol·mol-1 CO2 and with both 2% sucrose and 1000 μmol·mol-1 CO2 were designated as S1, C0 and Cs, respectively). We used S0 (without sucrose, ambient CO2) as CK to analyze the differential expression genes and proteins induced by exogenous carbon. Through the transcriptomic and proteomic analysis, with pooled data for Cs, C0 and S1 compared with CK, 70 differentially expressed genes (DEGs) and 65 differentially expressed proteins (DEPs) were identified. Based on biological functions and physiological characteristics, we identified 8 DEGs and 2 DEPs related to ethylene signaling process. Amongst the DEGs we focussed on ERF TFs, including ERF5 (LOC100244353, LOC100247763, LOC100254616 and LOC100261260), ERF105 (LOC100249507 and LOC100259725), ERF2 (LOC100254640) and CTr (CTr7). Also, there were 2 DEPs related to ethylene metabolism, such as S-adenosylmethionine synthase 5 (SAM synthase 5; XP_002280106.1) and 1-aminocyclopropane-1-carboxylic acid oxidase 2 (ACC oxidase 2; NP_001267871.1) were also identified. The transcriptome and proteome results suggested that exogenous carbon inhibits ethylene biosynthesis through ACC oxidase 2. Additionally, CTr7 and ERF5, which were up-regulated, are related to the ethylene signaling pathway. We speculate that exogenous carbon regulates plant growth through ethylene signaling pathways, but which inhibit ethylene biosynthesis. Conclusions Exogenous carbon regulates the expression of ethylene biosynthesis and signaling related genes, which may improve plant growth through the ethylene signaling pathway.


2016 ◽  
Vol 38 (5) ◽  
pp. 4-7 ◽  
Author(s):  
Ian H. Street ◽  
G. Eric Schaller

Ethylene was the first gaseous growth regulator discovered due to its pronounced effects on plant growth and development. Besides plants, many bacteria also have ethylene-binding proteins, indicating that the ability to bind and respond to ethylene is an evolutionarily ancient sensory mechanism. The recent characterization of an ethylene receptor from cyanobacteria and the finding that it plays a role in phototaxis confirms a prokaryotic role for the ethylene receptors and is consistent with the hypothesis that plants acquired ethylene receptors from the endosymbiont that gave rise to the chloroplast. The signalling pathway acting downstream of the plant ethylene receptors is considerably diverged from that found in bacteria, pointing to adaptations that can occur in transitioning from a prokaryotic to a eukaryotic cellular environment. Interestingly, although pathways for ethylene biosynthesis and signalling are conserved in plant lineages extending back to the green algae, there are examples of plants where these pathways have been lost, with ethylene no longer playing a regulatory role.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 508e-508
Author(s):  
Bin Liu ◽  
Royal D. Heins

A concept of ratio of radiant to thermal energy (RRT) has been developed to deal with the interactive effect of light and temperature on plant growth and development. This study further confirms that RRT is a useful parameter for plant growth, development, and quality control. Based on greenhouse experiments conducted with 27 treatment combinations of temperature, light, and plant spacing, a model for poinsettia plant growth and development was constructed using the computer program STELLA II. Results from the model simulation with different levels of daily light integral, temperature, and plant spacing showed that the RRT significantly affects leaf unfolding rate when RRT is lower than 0.025 mol/degree-day per plant. Plant dry weight is highly correlated with RRT; it increases linearly as RRT increases.


Plants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1311
Author(s):  
Magdalena Chmur ◽  
Andrzej Bajguz

Brassinolide (BL) represents brassinosteroids (BRs)—a group of phytohormones that are essential for plant growth and development. Brassinazole (Brz) is as a synthetic inhibitor of BRs’ biosynthesis. In the present study, the responses of Wolffia arrhiza to the treatment with BL, Brz, and the combination of BL with Brz were analyzed. The analysis of BRs and Brz was performed using LC-MS/MS. The photosynthetic pigments (chlorophylls, carotenes, and xanthophylls) levels were determined using HPLC, but protein and monosaccharides level using spectrophotometric methods. The obtained results indicated that BL and Brz influence W. arrhiza cultures in a concentration-dependent manner. The most stimulatory effects on the growth, level of BRs (BL, 24-epibrassinolide, 28-homobrassinolide, 28-norbrassinolide, catasterone, castasterone, 24-epicastasterone, typhasterol, and 6-deoxytyphasterol), and the content of pigments, protein, and monosaccharides, were observed in plants treated with 0.1 µM BL. Whereas the application of 1 µM and 10 µM Brz caused a significant decrease in duckweed weight and level of targeted compounds. Application of BL caused the mitigation of the Brz inhibitory effect and enhanced the BR level in duckweed treated with Brz. The level of BRs was reported for the first time in duckweed treated with BL and/or Brz.


Author(s):  
Yuki Nakamura ◽  
Anh H. Ngo

The article Non-specific phospholipase C (NPC): an emerging class of phospholipase C in plant growth and development, was originally published Online First without Open Access.


Sign in / Sign up

Export Citation Format

Share Document