Smog chamber study of the effects of NOx and NH3 on the formation of secondary organic aerosols and optical properties from photo-oxidation of toluene

2020 ◽  
Vol 727 ◽  
pp. 138632 ◽  
Author(s):  
Xue Qi ◽  
Shuping Zhu ◽  
Chenzhang Zhu ◽  
Jing Hu ◽  
Shengrong Lou ◽  
...  
2006 ◽  
Vol 6 (11) ◽  
pp. 3257-3280 ◽  
Author(s):  
A. Hodzic ◽  
R. Vautard ◽  
P. Chazette ◽  
L. Menut ◽  
B. Bessagnet

Abstract. Aerosol chemical and optical properties are extensively investigated for the first time over the Paris Basin in July 2000 within the ESQUIF project. The measurement campaign offers an exceptional framework to evaluate the performances of the chemistry-transport model CHIMERE in simulating concentrations of gaseous and aerosol pollutants, as well as the aerosol-size distribution and composition in polluted urban environments against ground-based and airborne measurements. A detailed comparison of measured and simulated variables during the second half of July with particular focus on 19 and 31 pollution episodes reveals an overall good agreement for gas-species and aerosol components both at the ground level and along flight trajectories, and the absence of systematic biases in simulated meteorological variables such as wind speed, relative humidity and boundary layer height as computed by the MM5 model. A good consistency in ozone and NO concentrations demonstrates the ability of the model to reproduce the plume structure and location fairly well both on 19 and 31 July, despite an underestimation of the amplitude of ozone concentrations on 31 July. The spatial and vertical aerosol distributions are also examined by comparing simulated and observed lidar vertical profiles along flight trajectories on 31 July and confirm the model capacity to simulate the plume characteristics. The comparison of observed and modeled aerosol components in the southwest suburb of Paris during the second half of July indicates that the aerosol composition is rather correctly reproduced, although the total aerosol mass is underestimated by about 20%. The simulated Parisian aerosol is dominated by primary particulate matter that accounts for anthropogenic and biogenic primary particles (40%), and inorganic aerosol fraction (40%) including nitrate (8%), sulfate (22%) and ammonium (10%). The secondary organic aerosols (SOA) represent 12% of the total aerosol mass, while the mineral dust accounts for 8%. The comparison demonstrates the absence of systematic errors in the simulated sulfate, ammonium and nitrates total concentrations. However, for nitrates the observed partition between fine and coarse mode is not reproduced. In CHIMERE there is a clear lack of coarse-mode nitrates. This calls for additional parameterizations in order to account for the heterogeneous formation of nitrate onto dust particles. Larger discrepancies are obtained for the secondary organic aerosols due to both inconsistencies in the SOA formation processes in the model leading to an underestimation of their mass and large uncertainties in the determination of the measured aerosol organic fraction. The observed mass distribution of aerosols is not well reproduced, although no clear explanation can be given.


2006 ◽  
Vol 6 (1) ◽  
pp. 401-454 ◽  
Author(s):  
A. Hodzic ◽  
R. Vautard ◽  
P. Chazette ◽  
L. Menut ◽  
B. Bessagnet

Abstract. Aerosol chemical and optical properties are extensively investigated for the first time over the Paris Basin in July 2000 within the ESQUIF project. The measurement campaign offers an exceptional framework to evaluate the performances of the chemistry-transport model CHIMERE in simulating concentrations of gaseous and aerosol pollutants, as well as the aerosol-size distribution and composition in polluted urban environment against ground-based and airborne measurements. A detailed comparison of measured and simulated variables during the second half of July with particular focus on 19 and 31 pollution episodes reveals an overall good agreement for gas-species and aerosol components both at the ground level and along flight trajectories, and the absence of systematic biases in simulated meteorological variables such as wind speed, relative humidity and boundary layer height as computed by the MM5 model. A good consistency in ozone and NO concentrations demonstrates the ability of the model to reproduce fairly well the plume structure and location both on 19 and 31 July, despite an underestimation of the amplitude of ozone concentrations on 31 July. The spatial and vertical aerosol distributions are also examined by comparing simulated and observed lidar vertical profiles along flight trajectories on 31 July and confirmed the model capacity to simulate the plume characteristics. The comparison of observed and modeled aerosol components in the southwest suburb of Paris during the second half of July indicated that the aerosol composition is rather correctly reproduced, although the total aerosol mass is underestimated of about 20%. The simulated Parisian aerosol is dominated by primary particulate matter that accounts for anthropogenic and biogenic primary particles (40%) and inorganic aerosol fraction (40%) including nitrate (8%), sulfate (22%) and ammonium (10%). The secondary organic aerosols (SOA) represent 12% of the total aerosol mass, while the mineral dust accounts for 8%. The comparison demonstrated the absence of systematic errors in the simulated sulfate, ammonium and nitrates total concentrations. However for nitrates the observed partition between fine and coarse mode is not reproduced. In CHIMERE there is a clear lack of coarse-mode nitrates. This calls for additional parameterizations in order to account for the heterogeneous formation of nitrate onto dust particles. Larger discrepancies are obtained for the secondary organic aerosols due to both inconsistencies in the SOA formation processes in the model leading to an underestimation of their mass and large uncertainties in the determination of the measured aerosol organic fraction. The observed mass distribution of aerosols is not well reproduced, although no clear explanation can be given.


2016 ◽  
Vol 50 (11) ◽  
pp. 1264-1276 ◽  
Author(s):  
Georges Saliba ◽  
R. Subramanian ◽  
Rawad Saleh ◽  
Adam T. Ahern ◽  
Eric M. Lipsky ◽  
...  

2021 ◽  
Vol 751 ◽  
pp. 141620
Author(s):  
Junling Li ◽  
Weigang Wang ◽  
Kun Li ◽  
Wenyu Zhang ◽  
Chao Peng ◽  
...  

2017 ◽  
Vol 579 ◽  
pp. 1699-1705 ◽  
Author(s):  
Junling Li ◽  
Kun Li ◽  
Weigang Wang ◽  
Jing Wang ◽  
Chao Peng ◽  
...  

2004 ◽  
Vol 4 (3) ◽  
pp. 657-678 ◽  
Author(s):  
M. Boy ◽  
T. Petäjä ◽  
M. Dal Maso ◽  
Ü. Rannik ◽  
J. Rinne ◽  
...  

Abstract. As part of the OSOA (Origin and formation of Secondary Organic Aerosols) project, two intensive field campaigns were conducted in Melpitz, Germany and Hyytiälä, Finland. This paper gives an overview of the measurements made during the Hyytiälä campaign, which was held between 1 and 16 August 2001. Various instrumental techniques were used to achieve physical and chemical characterisation of aerosols and to investigate possible precursor gases. During the OSOA campaign in Hyytiälä, particle formation was observed on three consecutive days at the beginning of the campaign (1 to 3 August 2001) and on three days later on. The investigation of the meteorological situation divided the campaign into two parts. During the first three days of August, relatively cold and clean air masses from northwest passed over the station (condensation sink – CS: <0.002 s-1, NOx: <0.5 ppb). Daily particle bursts of one fraction of the nucleation mode aerosols (3–10 nm) with number concentrations between 600–1200 particles cm-3 were observed. After this period, warmer and more polluted air from south-west to south-east arrived at the station (CS: 0.002–0.01 s-1, NOx: 0.5–4 ppb) and during these 13 days only three events were observed. These events were not as apparent as those that occurred during the earlier period of the campaign. The chemical analyses from different institutes of PM2, PM2.5 and PM10 particles confirmed the assumption that organic matter from the oxidation of various terpenes contributed to the formation of secondary organic aerosols (SOA). Concerning these conclusions among others, the ratio between formic (oxidation product of isoprene and monoterpenes by ozone) and acetic acid (increased by anthropogenic emissions) (ratio=1 to 1.5) and concentration of different carboxylic acids (up to 62 ngm-3) were investigated. Gas/particle partitioning of five photo-oxidation products from α- and β-pinene resulted in higher concentrations of pinonic, nor pinonic and pinic acids in the particle phase than in the gas phase, which indicates a preference to the particle phase for these compounds. The average growth factors (GF) from 100 nm particles in water vapour gave a diurnal pattern with a maximum during daytime and values between 1.2 and 1.7. On average, the amount of secondary organic carbon reached values around 19% of the sampled aerosols and we speculate that formation of SOA with the influence of photo-oxidation products from terpenes was the reason for the observed particle bursts during the campaign. However, correlations between the precursor gases or the favourable condensing species with the monitored nucleation mode particles were not found. For the investigated time period other factors like the condensation sink of newly formed particles to the pre-existing aerosols, temperature and solar irradiance seem to be more important steering parameters for the production of new aerosols. Another open question concerns the vertical distribution of the formation of SOA. For this reason measurements were conducted at different altitudes using a tethered balloon platform with particle sampling and particle counting equipment. They were incorporated with eddy covariance (EC) flux measurements made at 23 m above ground level. The results give first indications that production of new aerosols happens throughout the planetary boundary layer (PBL), whereby different parameters e.g. temperature, CS, solar irradiance or concentration of monoterpenes are responsible for the location of the vertical maximum.


2016 ◽  
Author(s):  
Wei Deng ◽  
Qihou Hu ◽  
Tengyu Liu ◽  
Xinming Wang ◽  
Yanli Zhang ◽  
...  

Abstract. In China primary particulate matter emission from on-road vehicles is predominantly coming from diesels, yet secondary organic aerosols (SOA) formed from diesel emission may be also of greater significance due to more intermediate volatile organic compounds (IVOC) in the exhaust. Here we introduced exhaust from in-use diesel vehicles under warm idling condition directly into an indoor smog chamber with a 30 m3 Teflon reactor, and investigated the SOA formation as well as chemical aging of organic aerosols during photo-oxidation. The emission factors of primary organic aerosol (POA) and black carbon (BC) for the three typical Chinese diesel vehicles ranged 0.18–0.91 and 0.15–0.51 g kg-fuel−1, respectively; and the SOA production factors ranged 0.50–1.8 g kg-fuel−1 with an average SOA/POA ratio of 1.6. Aromatic hydrocarbons could only explain less than 3 % of SOA formed during aging, and IVOC and oxygenated VOC might contribute substantially to SOA formation. High resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) resolved that POA dominated by CH classes (alkanes, cycloalkanes and alkenes) with high abundances of the CnH2n+1 and CnH2n-1 fragments, and after photo-oxidation the fraction of CH classes and the H/C ratios decreased, while the fraction of CHO, as well as the ratios of O/C and of organic matter to organic carbon (OM/OC), all increased. The plot of f44 (ratio of m/z 44 to the total signal in a mass spectrum) versus f43 indicated that diesel SOA were semi-volatile oxygenated organic aerosols (SV-OOA). The slopes of O:C versus H:C element ratios in the Van Krevelen diagram ranged from −0.47 to −0.68, suggesting a combination of carboxylic acid and alcohols/peroxides formed during the aging of diesel exhaust.


Sign in / Sign up

Export Citation Format

Share Document