Effectiveness of non-exchangeable potassium quantified by mild tetraphenyl‑boron extraction in estimating radiocesium transfer to soybean in Fukushima

Author(s):  
Shokichi Wakabayashi ◽  
Tetsuya Eguchi ◽  
Atsushi Nakao ◽  
Kazuki Azuma ◽  
Shigeto Fujimura ◽  
...  
Soil Science ◽  
1967 ◽  
Vol 104 (2) ◽  
pp. 119-122 ◽  
Author(s):  
J. DEIST ◽  
O. TALIBUDEEN

1953 ◽  
Vol 14 (6) ◽  
pp. 749
Author(s):  
John H. Felts ◽  
J.K. Aikawa ◽  
George T. Harrell

Author(s):  
Mesfin Kassa ◽  
Wassie Haile ◽  
fassile kebede

Quantity-intensity characteristics are among conventional approaches for studying potassium dynamics and its availability; this was assessed to determine availability in four districts: namely, Sodo Zuria, Damot Gale, Damot Sore, and Boloso Sore at three different land use type viz., enset-coffee, crop land, and grazing land. There was water soluble, ammonium acetate, nitric acid extractable potassium, exchangeable potassium, and non-exchangeable potassium studied in soil samples, which were collected from 0-20 cm depth of each land type. The study revealed that water soluble and ammonium acetate extractable potassium concentrations ranged from 0.04 to 0.42 cmolKg-1 soils enset-coffee and grazing land use types, respectively. The study showed that exchangeable potassium constituted the highest proportion of available potassium, while the proportion of water soluble potassium was found to be the lowest. In this study, non-exchangeable potassium concentrations varied from 0.10 to 0.04cmolKg-1soils for enset-coffee, and crop and grazing land use type. Furthermore, available potassium and exchangeable potassium concentrations were positively correlated with OC(r=0.95***), cation exchange capacity, and sand and clay(r=0.98***). In addition, the K dynamics as impacted by land use types found that the highest change in exchangeable potassium (0.31cmolkg-1soils) and potential buffering capacity (1.79cmolkg-1soils) were noted in crop land use types, whereas the lowest change(1.26cmolkg-1 soils) was observed in the enset-coffee system, The varying properties, potassium status, dynamic and land use type of soils identified in the study areas provided adequate information to design soil potassium management options and further research about the soil in each site. Therefore, application of site specific soil fertility management practices and research can improve soil potassium status and quantity intensity parameters to sustain crop productive soils.


Soil Research ◽  
1974 ◽  
Vol 12 (2) ◽  
pp. 147 ◽  
Author(s):  
IF Fergus ◽  
AE Martin

Five soils were cropped with four plant species in pot experiments in the glasshouse, without addition of potassium, until growth virtually ceased, after which the depleted soils were replanted with either the same species, or a different one, to test the reproducibility of the 'exhaustion' conditions imposed. Uptake of potassium by the plants exceeded the changes in exchangeable potassium in four soils; the excess amounts taken up differed markedly between species and these differences were reproducible on replanting. Uptake by setaria (Setaria anceps) and siratro (Macroptilium atropurpureum) exceeded that by Rhodes grass (Chloris gayana) and lucerne (Medicago sativa), except for one swelling clay soil from which uptake by lucerne equalled that by siratro. Most of the differences between species were attributed to the uptake of initially non-exchangeable potassium, which was removed in significant amounts from three of the soils. For these three soils, uptake from non-exchangeable sources was detected only after about 80% of the exchangeable potassium had been removed. It is postulated that the efficiency of plant removal of non-exchangeable potassium from soil is directly related to the degree to which plant roots can lower the concentration of potassium in the soil solution.


Sign in / Sign up

Export Citation Format

Share Document