Comment on ‘How plausible are high-frequency sediment supply-driven cycles in the stratigraphic record?’ by S. Castelltort and J. Van Den Driessche (2003, Sedimentary Geology, 157, 3–13)

2004 ◽  
Vol 164 (3-4) ◽  
pp. 327-329 ◽  
Author(s):  
Jasper Knight
2003 ◽  
Vol 157 (1-2) ◽  
pp. 3-13 ◽  
Author(s):  
Sébastien Castelltort ◽  
Jean Van Den Driessche

2018 ◽  
Vol 6 (4) ◽  
pp. 1041-1057 ◽  
Author(s):  
Tobias Müller ◽  
Marwan A. Hassan

Abstract. In steep headwater reaches, episodic mass movements can deliver large volumes of sediment to fluvial channels. If these inputs of sediment occur with a high frequency and magnitude, the capacity of the stream to rework the supplied material can be exceeded for a significant amount of time. To study the equilibrium conditions in a channel following different episodic sediment supply regimes (defined by grain size distribution, frequency, and magnitude of events), we simulate sediment transport through an idealized reach with our numerical 1-D model “BESMo” (Bedload Scenario Model). The model performs well in replicating flume experiments of a similar scope (where sediment was fed constantly, in one, two, or four pulses) and allowed the exploration of alternative event sequences. We show that in these experiments, the order of events is not important in the long term, as the channel quickly recovers even from high magnitude events. In longer equilibrium simulations, we imposed different supply regimes on a channel, which after some time leads to an adjustment of slope, grain size, and sediment transport that is in equilibrium with the respective forcing conditions. We observe two modes of channel adjustment to episodic sediment supply. (1) High-frequency supply regimes lead to equilibrium slopes and armouring ratios that are like conditions in constant-feed simulations. In these cases, the period between pulses is shorter than a “fluvial evacuation time”, which we approximate as the time it takes to export a pulse of sediment under average transport conditions. (2) In low-frequency regimes the pulse period (i.e., recurrence interval) exceeds the “fluvial evacuation time”, leading to higher armouring ratios due to the longer exposure of the bed surface to flow. If the grain size distribution of the bed is fine and armouring weak, the model predicts a decrease in the average channel slope. The ratio between the “fluvial evacuation time” and the pulse period constitutes a threshold that can help to quantify how a system responds to episodic disturbances.


2018 ◽  
Author(s):  
Tobias Müller ◽  
Marwan Hassan

Abstract. In steep headwater reaches, episodic mass movements can deliver large volumes of sediment to fluvial channels. If these inputs of sediment occur with a high frequency and magnitude, the capacity of the stream to rework the supplied material can be exceeded for a significant amount of time. To study the equilibrium conditions in a channel following different episodic sediment supply regimes (defined by grain size distribution, frequency, and magnitude of events), we simulate sediment transport through an idealized reach with our numerical 1D model BESMo (Bedload Scenario Model), which was configured using flume experiments with a similar scope. The model performs well in replicating the flume experiments (where sediment was fed constantly, in 1, 2 or 4 pulses) and allowed the exploration of alternative event sequences. We show that in these experiments, the ordering of events is not important in the long term, as the channel quickly recovers even from high magnitude events. In longer equilibrium simulations, we imposed different supply regimes on a channel, which after some time leads to an adjustment of slope, grain size, and sediment transport that is in equilibrium with the respective forcing conditions. We observe two modes of channel adjustment to episodic sediment supply. 1) High-frequency supply regimes lead to equilibrium slopes and armouring ratios that are like conditions in constant feed simulations. In these cases, the period between pulses is shorter than a fluvial evacuation time, which we approximate as the time it takes to export a pulse of sediment under average transport conditions. 2) In low-frequency regimes the pulse period (i.e. recurrence interval) exceeds the fluvial evacuation time, leading to higher armouring ratios due to longer exposure of the bed surface to flow. If the grain size distribution of the bed is fine and armouring weak, the model predicts a lowering in the average channel slope. The ratio between the fluvial evacuation time and the pulse period constitutes a threshold that can help to quantify how a system responds to episodic disturbances.


1994 ◽  
Vol 34 (1) ◽  
pp. 350 ◽  
Author(s):  
Keyu Liu ◽  
Lincoln Paterson ◽  
Feng Xu Jian

SEDPAK is a forward modelling computer program for depositional processes developed by the University of South Carolina's StratMod Group. It simulates the geometry of generalised lithofacies in a sedimentary sequence or a basin by considering principally four major geological variables: eustatic sea level, tectonic movement, sediment accumulation, and initial and evolving basin surfaces.Based on seismic data, well logs and other information from drill holes, the geometries of sedimentary sequences of the Gippsland Basin and the Barrow-Exmouth Sub-basins have been successfully reproduced on both basin and reservoir scales using SEDPAK 3.12. The simulation results indicate that eustacy, tectonics, sediment input and basin physiography can be equally important in controlling the geometry of strata and basin architecture. However, some differences exist: (1) tectonic movement normally contributes to long-term variations of the first order (megasequence) basin architecture and configuration; (2) the second order (sequence) basin architecture and stratal geometry can be controlled by either sediment supply, eustacy, tectonism or a combination; and (3) high frequency facies variations and stratal geometry within individual sequences are primarily controlled by eustatic sea level variations and basin physiography.This study has demonstrated that SEDPAK is a useful tool for reconstruction of basin evolution histories and for reservoir characterisation. It can also be used to predict sedimentary facies in undrilled exploration frontier areas. In addition, it can be used to address some critical assumptions and problems in the sequence stratigraphy concept. SEDPAK is particularly useful in the study of high frequency sequence stratigraphy and cyclicity, where various sequence or parasequence bounding surfaces and internal geometry can not be easily recognised from seismic data, well logs and outcrops.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Glenn R. Sharman ◽  
Zoltan Sylvester ◽  
Jacob A. Covault

Abstract Understanding how environmental forcings (e.g., tectonics, climate) are transformed by erosional landscapes into sedimentary signals is a critical component of inverting the stratigraphic record. Previous research has largely focused on sediment supply (Qs) and grain size as the de facto sedimentary signals of changing forcing mechanisms. We use a numerical model to consider the paired response of sediment provenance (Pv), expressed as fractional sediment load, and Qs to demonstrate that the same change in environmental forcing may have a different expression in the sedimentary record. While Qs reflects integrated denudation across an erosional catchment, Pv is controlled by spatially variable erosion that occurs in transient landscapes. Pv from proximal sediment sources increases during upstream knickpoint migration, whereas Pv from distal sediment sources increases when bedrock channels incise to produce lower gradient profiles. Differences between the Qs and Pv signals relate to distinct geomorphic processes that operate on different time scales and allow for a refined differentiation of the timing and mechanism of forcings than possible via analysis of either signal alone. Future efforts to integrate multiple sedimentary signals may thus yield a richer picture of underlying forcing mechanisms, facilitating efforts to invert the stratigraphic record.


Sign in / Sign up

Export Citation Format

Share Document