Core-shell ZnO@Cu2O encapsulated Ag NPs nanocomposites for photooxidation-adsorption of iodide anions under visible light

2021 ◽  
Vol 262 ◽  
pp. 118328
Author(s):  
Jiuyu Chen ◽  
Aotian Gu ◽  
Elvis Djam Miensah ◽  
Ying Liu ◽  
Peng Wang ◽  
...  
Keyword(s):  
2017 ◽  
Vol 18 ◽  
pp. 250-260 ◽  
Author(s):  
Muhammad Tahir ◽  
Beenish Tahir ◽  
Nor Aishah Saidina Amin ◽  
Zaki Yamani Zakaria
Keyword(s):  

2020 ◽  
Vol 01 ◽  
Author(s):  
Bonamali Pal ◽  
Anila Monga ◽  
Aadil Bathla

Background:: Bimetallic nanocomposites have currently gained significant importance for enhanced catalytic applications relative to monometallic analogues. The synergistic interactions modified electronic and optical properties in the bimetallic (M1@M2) structural morphology e.g., core-shell /alloy nanostructures resulted in a better co-catalytic performance for TiO2 photocatalysis. Objective:: Hence, this article discusses the preparation, characterization, and co-catalytic activity of different bimetallic nanostructures namely, Cu@Zn, Pd@Au, Au@Ag, and Ag@Cu, etc. Method:: These bimetallic co-catalysts deposited on TiO2 possess the ability to absorb visible light due to surface plasmonic absorption and are also expected to display the new properties due to synergy between two distinct metals. As a result, they reveal the highest level of activity than the monometal deposited TiO2. Result:: Their optical absorption, emission, charge carrier dynamics, and surface structural morphology are explained for the improved photocatalytic activity of M1@M2 loaded TiO2 for the hydrogenation of certain organic compounds e.g., quinoline, crotonaldehyde, and 1,3-dinitrobenzene, etc. under UV/ visible light irradiation. Conclusion:: It revealed that the use of bimetallic core@shell co-catalyst for hydrogenation of important industrial organics by M1@M2-TiO2 nanocomposite demonstrates beneficial reactivity in many instances relative to conventional transition metal catalysts.


Nanomaterials ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 1007
Author(s):  
Azam Ali ◽  
Mariyam Sattar ◽  
Fiaz Hussain ◽  
Muhammad Humble Khalid Tareen ◽  
Jiri Militky ◽  
...  

The versatile one-pot green synthesis of a highly concentrated and stable colloidal dispersion of silver nanoparticles (Ag NPs) was carried out using the self-assembled tannic acid without using any other hazardous chemicals. Tannic acid (Plant-based polyphenol) was used as a reducing and stabilizing agent for silver nitrate in a mild alkaline condition. The synthesized Ag NPs were characterized for their concentration, capping, size distribution, and shape. The experimental results confirmed the successful synthesis of nearly spherical and highly concentrated (2281 ppm) Ag NPs, capped with poly-tannic acid (Ag NPs-PTA). The average particle size of Ag NPs-PTA was found to be 9.90 ± 1.60 nm. The colloidal dispersion of synthesized nanoparticles was observed to be stable for more than 15 months in the ambient environment (25 °C, 65% relative humidity). The synthesized AgNPs-PTA showed an effective antimicrobial activity against Staphylococcus Aureus (ZOI 3.0 mM) and Escherichia coli (ZOI 3.5 mM). Ag NPs-PTA also exhibited enhanced catalytic properties. It reduces 4-nitrophenol into 4-aminophenol in the presence of NaBH4 with a normalized rate constant (Knor = K/m) of 615.04 mL·s−1·mg−1. For comparison, bare Ag NPs show catalytic activity with a normalized rate constant of 139.78 mL·s−1·mg−1. Furthermore, AgNPs-PTA were stable for more than 15 months under ambient conditions. The ultra-high catalytic and good antimicrobial properties can be attributed to the fine size and good aqueous stability of Ag NPs-PTA. The unique core-shell structure and ease of synthesis render the synthesized nanoparticles superior to others, with potential for large-scale applications, especially in the field of catalysis and medical.


RSC Advances ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 2733-2743
Author(s):  
Parisa Talebi ◽  
Harishchandra Singh ◽  
Ekta Rani ◽  
Marko Huttula ◽  
Wei Cao

Surface plasmonic resonance enabled Ni@NiO/NiCO3 core–shell nanostructures as promising photocatalysts for hydrogen evolution under visible light.


Sign in / Sign up

Export Citation Format

Share Document