Forward osmosis to treat effluent of pulp and paper industry using urea draw-solute: Energy consumption, water flux, and solute flux

2022 ◽  
Vol 278 ◽  
pp. 119617
Author(s):  
Satish Kumar Singh ◽  
Chhaya Sharma ◽  
Abhijit Maiti
Forests ◽  
2019 ◽  
Vol 10 (9) ◽  
pp. 725 ◽  
Author(s):  
Qingjian Zhao ◽  
Sheng Ding ◽  
Zuomin Wen ◽  
Anne Toppinen

In the context of global climate change, energy conservation and greenhouse effect gases (GHG) reduction are major challenges to mankind. The forestry-pulp and paper industry is a typical high energy consumption and high emission industry. We conducted in-depth research on the energy flows and carbon footprint of the forestry-pulp paper industry. The results show that: (1) The main sources of energy supply include external fossil fuel coal and internal biomass fuel black liquor, which supply 30,057,300 GJ and 14,854,000 GJ respectively; in addition, the energy produced by diesel in material transportation reaches 11,624,256 GJ. (2) The main energy consumption processes include auxiliary engineering projects, material transportation, papermaking, alkali recovery, pulping and other production workshops. The percentages of energy consumption account for 26%, 18%, 15%, 10% and 6%, respectively. (3) The main sources of carbon include coal and forest biomass, reaching 770,000 tons and 1.39 million tons, respectively. (4) Carbon emissions mainly occur in fuel combustion in combined heating and power (CHP) and diesel combustion in material transportation, reaching 6.78 million tons and 790,000 tons of carbon, respectively. (5) Based on steam and electricity consumption, the indirect carbon emissions of various thermal and electric energy production units were calculated, and the key energy consumption process units and hotspot carbon flow paths were further found. This research established a theoretical and methodological basis for energy conservation and emission reduction.


2009 ◽  
Vol 12 (3) ◽  
pp. 257-269 ◽  
Author(s):  
L. Szabó ◽  
A. Soria ◽  
J. Forsström ◽  
J.T. Keränen ◽  
E. Hytönen

TAPPI Journal ◽  
2014 ◽  
Vol 13 (6) ◽  
pp. 19-24
Author(s):  
TROY RUNGE ◽  
CHUNHUI ZHANG

Agricultural residues and energy crops are promising resources that can be utilized in the pulp and paper industry. This study examines the potential of co-cooking nonwood materials with hardwoods as means to incorporate nonwood material into a paper furnish. Specifically, miscanthus, switchgrass, and corn stover were substituted for poplar hardwood chips in the amounts of 10 wt %, 20 wt %, and 30 wt %, and the blends were subjected to kraft pulping experiments. The pulps were then bleached with an OD(EP)D sequence and then refined and formed into handsheets to characterize their physical properties. Surprisingly, all three co-cooked pulps showed improved strength properties (up to 35%). Sugar measurement of the pulps by high-performance liquid chromatography suggested that the strength increase correlated with enriched xylan content.


1999 ◽  
Vol 53 (10) ◽  
pp. 1334-1338 ◽  
Author(s):  
Yoshiya Kuide ◽  
Kazuyoshi Yamamoto

Sign in / Sign up

Export Citation Format

Share Document