Computational evaluation of an optimum leading-edge slat deflection angle for dynamic stall control in a novel urban-scale vertical axis wind turbine for low wind speed operation

2020 ◽  
Vol 40 ◽  
pp. 100748 ◽  
Author(s):  
Tariq Ullah ◽  
Adeel Javed ◽  
Ali Abdullah ◽  
Majid Ali ◽  
Emad Uddin
Energy ◽  
2019 ◽  
Vol 174 ◽  
pp. 246-260 ◽  
Author(s):  
Junwei Zhong ◽  
Jingyin Li ◽  
Penghua Guo ◽  
Yu Wang

AIAA Journal ◽  
2014 ◽  
Vol 52 (2) ◽  
pp. 456-462 ◽  
Author(s):  
David Greenblatt ◽  
Amos Ben-Harav ◽  
Hanns Mueller-Vahl

Author(s):  
Mohamed Saiful Firdaus Hussin ◽  
Mohd Fariduddin Mukhtar ◽  
Mohd Zaidi Mohd Tumari ◽  
Nursabillilah Mohd Ali ◽  
Amir Abdullah Muhammad Damanhuri ◽  
...  

KnE Energy ◽  
2015 ◽  
Vol 2 (2) ◽  
pp. 172
Author(s):  
Tedy Harsanto ◽  
Haryo Dwi Prananto ◽  
Esmar Budi ◽  
Hadi Nasbey

<p>A vertical axis wind turbine triple-stage savonius type has been created by using simple materials to generate electricity for the alternative wind power plant. The objective of this research is to design a simple wind turbine which can operate with low wind speed. The turbine was designed by making three savonius rotors and then varied the structure of angle on the three rotors, 0˚, 90˚ and 120˚. The dimension of the three rotors are created equal with each rotor diameter 35 cm and each rotor height 19 cm. The turbine was tested by using blower as the wind sources. Through the measurements obtained the comparisons of output power, rotation of turbine, and the level of efficiency generated by the three variations. The result showed that the turbine with angle of 120˚ operate most optimally because it is able to produce the highest output power and highest rotation of turbine which is 0.346 Watt and 222.7 RPM. </p><p><strong>Keywords</strong>: Output power; savonius turbine; triple-stage; the structure of angle</p>


Author(s):  
Mohamed Saiful Firdaus Hussin ◽  
Ridhwan Jumaidin ◽  
Nursabillilah Mohd Ali ◽  
Muhammad Ashraf Fauzi ◽  
Shahrizal Saat ◽  
...  

2014 ◽  
Author(s):  
Jobaidur R. Khan ◽  
Mosfequr Rahman

Amidst of high demand of energy, the world is seeking alternative energy sources. Wind alone can fulfill most of the energy requirement of the world by its efficient conversion into energy. On efficiency measurement, Horizontal Axis Wind Turbines (HAWT) is the popular to the researchers, but it works best in places where the wind is not disturbed and has high wind power. The inherent advantage of facing the wind direction, design simplicity, less expensive technology for construction, lower wind start-up speeds, easier maintenance, and relatively quietness are turning the focus to Vertical Axis Wind Turbine (VAWT). The low wind speed and non-smooth wind flow regions are attracted for these machines. Savonius turbine is the simplest form of VAWT and operation is based on the difference of the drag force on its blades. The main objective of this study is to analyze a perfect mixture of new and innovative designs of Savonius turbine blades, which can make VAWT more attractive, efficient, durable and sustainable. This is studied by using blade with different numbers in operating in different wind speed. A Computational Fluid Dynamics (CFD) analysis has been used. 2D CAD models of various VAWT geometries are created and tested with CFD software ANSYS/FLUENT with a similar flow-driven motion in a wind tunnel. These simulations provided the aero-dynamic characteristics like shear stress, velocity distribution and pressure distribution. Some physical models with desired properties needed to be fabricated and tested inside tunnel to find the effect of different shapes in real.


Sign in / Sign up

Export Citation Format

Share Document