Coupled optical and thermal analyses of a new type of solar water heaters using parabolic trough reflectors

2020 ◽  
Vol 40 ◽  
pp. 100780
Author(s):  
Vahid Madadi Avargani ◽  
Amir Rahimi ◽  
Mohammad Divband
2014 ◽  
Vol 1008-1009 ◽  
pp. 58-62
Author(s):  
Bin Yang ◽  
Wei Wang ◽  
De Gong Zuo

This paper introduces a new type of solar water heater——Parabolic trough solar water heater,the biggest feature of the solar water heater is that the parabolic trough reflector can reflect light onto the tube with reflective principles,which may lead to lots of advantages,such as more strong solar energy flux density,fewer losses,fewer tubes used.In a word,the cost is reduced while the performance is guaranteed.On this basis,we built a collector area of about 1.54 square meters of parabolic trough solar water heaters bench and made experiments to test.Instantaneous average efficiency and daily average efficiency of the water heater can be calculated.Efficiency curve can also be generated.Meanwhile we measured the heat loss coefficient of the water heater.The results showed that the daily average efficiency of the parabolic trough concentrating solar collector is between 30% and 50%,while at higher temperatures the collector showed its good insulation properties.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Mehdi Jahangiri ◽  
Esther T. Akinlabi ◽  
Sam M. Sichilalu

Solar water heaters (SWHs) are one of the most effective plans for general and easy use of solar energy to supply hot water in domestic and industrial sectors. This paper gives the first-ever attempts to assess the optimal localization of SWHs across 22 major cities in Zambia, as well as determine the possibility of hot water generation and model the greenhouse gas (GHG) emission saving. The climate data used is extracted by using the MeteoSyn software which is modeled in TSOL™. Results show the high potential of GHG emission reduction due to nonconsumption of fossil fuels owing to the deployment of SWHs, and three cities Kabwe, Chipata, and Mbala had the highest GHG mitigation by 1552.97 kg/y, 1394.8 kg/y, and 1321.39 kg/y, respectively. On average, SWHs provide 62.47% of space heating and 96.05% of the sanitary hot water requirement of consumers. The findings have shown the potential for the deployment of SWHs in Zambia. The techno-enviro study in this paper can be used by the policymakers of Zambia and countries with similar climates.


Sign in / Sign up

Export Citation Format

Share Document