A multi-objective assessment for the water-energy-food nexus for rural distributed energy systems

2022 ◽  
Vol 51 ◽  
pp. 101956
Author(s):  
Jesús Eduardo Rodríguez-Gutiérrez ◽  
Abril Castillo-Molar ◽  
Luis Fabián Fuentes-Cortés
2021 ◽  
Vol 13 (9) ◽  
pp. 4681
Author(s):  
Khashayar Hamedi ◽  
Shahrbanoo Sadeghi ◽  
Saeed Esfandi ◽  
Mahdi Azimian ◽  
Hessam Golmohamadi

Growing concerns about global greenhouse gas emissions have led power systems to utilize clean and highly efficient resources. In the meantime, renewable energy plays a vital role in energy prospects worldwide. However, the random nature of these resources has increased the demand for energy storage systems. On the other hand, due to the higher efficiency of multi-energy systems compared to single-energy systems, the development of such systems, which are based on different types of energy carriers, will be more attractive for the utilities. Thus, this paper represents a multi-objective assessment for the operation of a multi-carrier microgrid (MCMG) in the presence of high-efficiency technologies comprising compressed air energy storage (CAES) and power-to-gas (P2G) systems. The objective of the model is to minimize the operation cost and environmental pollution. CAES has a simple-cycle mode operation besides the charging and discharging modes to provide more flexibility in the system. Furthermore, the demand response program is employed in the model to mitigate the peaks. The proposed system participates in both electricity and gas markets to supply the energy requirements. The weighted sum approach and fuzzy-based decision-making are employed to compromise the optimum solutions for conflicting objective functions. The multi-objective model is examined on a sample system, and the results for different cases are discussed. The results show that coupling CAES and P2G systems mitigate the wind power curtailment and minimize the cost and pollution up to 14.2% and 9.6%, respectively.


2019 ◽  
Author(s):  
Μάριος Καρμέλλος

Μια λύση προς την κατεύθυνση των οικονομικά ελκυστικών και περιβαλλοντικά φιλικών ενεργειακών συστημάτων είναι η ανάπτυξη των συστημάτων διεσπαρμένης παραγωγής ενέργειας (ΣΔΠΕ). Τα ΣΔΠΕ έχουν πολλά πλεονεκτήματα με το σημαντικότερο να είναι η παραγωγή ενέργειας σε τοπικό επίπεδο, ελαχιστοποιώντας έτσι τις απώλειες. Τα ΣΔΠΕ μπορούν να προσφέρουν καλύτερη ενσωμάτωση μεταξύ των συμβατικών ενεργειακών συστημάτων και των ΑΠΕ, και μπορούν να καλύψουν τις ενεργειακές ανάγκες είτε πρόκειται για ένα κτήριο, ένα σύμπλεγμα κτηρίων ή ακόμη και μια πόλη, με το βαθμό αποκέντρωσης να διαφέρει. Ένα ΣΔΠΕ μπορεί να σχεδιαστεί για να καλύπτει τις ενεργειακές ανάγκες σε ηλεκτρισμό, θερμότητα και ψύξη. Επίσης, τα συστήματα αυτά μπορούν να προσφέρουν λύσεις με χαμηλό ετήσιο κόστος και χαμηλές εκπομπές CO2. Ο σχεδιασμός ενός ΣΔΠΕ είναι ένα περίπλοκο πρόβλημα στο οποίο πολλές πτυχές πρέπει να λαμβάνονται υπόψη. Αυτή η διατριβή έχει σκοπό να παρουσιάσει μια μεθοδολογία για τον βέλτιστο σχεδιασμό ΣΠΔΕ χρησιμοποιώντας πολυ-κριτηριακό μικτό-ακέραιο γραμμικό προγραμματισμό (ΜΑΓΠ) με αντικειμενικές συναρτήσεις το συνολικό ετήσιο κόστος και τις εκπομπές CO2. Οι υποψήφιες τεχνολογίες είναι: (α) μονάδες συμπαραγωγής ηλεκτρισμού και θερμότητας, (β) αντλίες θερμότητας, (γ) μονάδες ψύξεις με απορρόφηση, (δ) λέβητες, (ε) ηλιακοί συλλέκτες, (στ) φωτοβολταϊκά, (ζ) ανεμογεννήτριες, (η) μονάδες αποθήκευσης θερμότητας, (θ) μονάδες αποθήκευσης ηλεκτρισμού, (ι) δίκτυο διανομής θερμότητας και (κ) μικροδίκτυο. Τα αποτελέσματα δίνουν ως λύσεις τις τεχνολογίες που επιλέγονται να εγκατασταθούν σε κάθε κτήριο και την αντίστοιχη ισχύ τους, τη διάταξη του δικτύου διανομής θερμότητας (αν σχηματιστεί), το επιχειρησιακό προφίλ των τεχνολογιών, και την ανταλλαγή ηλεκτρισμού διαμέσου του μικροδικτύου καθώς και μεταξύ των κτηρίων και του εθνικού δικτύου ηλεκτρισμού. Επιπλέον, οι αντίστοιχες μελέτες που υπάρχουν στη βιβλιογραφία διαχωρίζονται σε δύο γενικές κατηγορίες, (α) στη «Μέθοδο Α» όπου γίνεται ταυτόχρονη επιλογή και διαστασιολόγηση των υποψήφιων τεχνολογιών, και (β) στη «Μέθοδο Β» όπου οι διαστάσεις των τεχνολογιών είναι προκαθορισμένες. Αυτή η διατριβή παρουσιάζει αρκετά καινοτομικά στοιχεία αναφορικά με τον βέλτιστο σχεδιασμό ΣΔΠΕ. Συγκεκριμένα, παρουσιάζονται δύο προσεγγίσεις για την μοντελοποίηση τεχνολογιών, επεκτείνοντας την σχετική βιβλιογραφία. Επιπλέον, παρουσιάζονται μαθηματικά μοντέλα για όλες οι διαθέσιμες τεχνολογίες. Αυτές οι προσεγγίσεις συγκρίνονται καθώς προσφέρουν διαφορετικές λύσεις, και εξετάζονται πλεονεκτήματα και μειονεκτήματα που έχουν. Πέρα απ’ αυτά, η διατριβή έχει ως σκοπό τον βέλτιστο σχεδιασμό ΣΔΠΕ υπό συνθήκες αβεβαιότητας. Οι αλλαγές στις τιμές των παραμέτρων σχεδιασμού μπορούν να επηρεάσουν τον βέλτιστο σχεδιασμό και αυτή η διατριβή σκοπεύει να προσφέρει στον αποφασίζων εύρωστες λύσεις. Στο πλαίσιο της διατριβής υποτίθεται ότι οι παράμετροι που είναι υπό αβεβαιότητα είναι οι τιμές ενέργειας (ηλεκτρισμού και φυσικού αερίου), το επιτόκιο αναγωγής, τα ενεργειακά φορτία, η ηλιακή ακτινοβολία και η ταχύτητα του ανέμου. Για την αντιμετώπιση της αβεβαιότητας και τον εντοπισμό των εύρωστων λύσεων χρησιμοποιούνται τέσσερις τεχνικές που ανήκουν στο πεδίο της «εύρωστης βελτιστοποίησης» ή της «στοχαστικής βελτιστοποίησης»: (α) objective-wise worst case, (β) minimax regret criterion (MMR), (γ) minimax expected regret (MER) και (δ) ανάλυση Monte Carlo. Συνολικά, αυτές οι τεχνικές προσφέρουν λύσεις πολύ διαφορετικές σε σχέση με την ντετερμινιστική προσέγγιση του προβλήματος, οι οποίες μπορούν να χαρακτηριστούν ως εύρωστες, υπογραμμίζοντας τη σημασία της θεώρησης της αβεβαιότητας κατά τη διαδικασία σχεδιασμού. Η διατριβή καταλήγει ότι η αντιμετώπιση της αβεβαιότητας κατά τον σχεδιασμό ενός ΣΔΠΕ είναι πολύ σημαντική καθώς οι λύσεις αλλάζουν σημαντικά, και αυτό έχει ιδιαίτερη σημασία για τον βέλτιστο σχεδιασμό του συστήματος, την οικονομική του βιωσιμότητα καθώς και την επιχειρησιακή του σταθερότητα. Εν τέλει, σημειώνεται ότι οι μεθοδολογίες που έχουν αναπτυχθεί είναι γενικές και μπορούν εύκολα να προσαρμοστούν και να εφαρμοστούν σύμφωνα με τις προτιμήσεις του αποφασίζων.


2017 ◽  
Vol 204 ◽  
pp. 1299-1316 ◽  
Author(s):  
M. Di Somma ◽  
B. Yan ◽  
N. Bianco ◽  
G. Graditi ◽  
P.B. Luh ◽  
...  

2016 ◽  
Vol 184 ◽  
pp. 1508-1516 ◽  
Author(s):  
Tobias Falke ◽  
Stefan Krengel ◽  
Ann-Kathrin Meinerzhagen ◽  
Armin Schnettler

2021 ◽  
Vol 290 ◽  
pp. 116746
Author(s):  
Juan D. Fonseca ◽  
Jean-Marc Commenge ◽  
Mauricio Camargo ◽  
Laurent Falk ◽  
Iván D. Gil

2010 ◽  
Vol 87 (12) ◽  
pp. 3642-3651 ◽  
Author(s):  
Hongbo Ren ◽  
Weisheng Zhou ◽  
Ken’ichi Nakagami ◽  
Weijun Gao ◽  
Qiong Wu

Sign in / Sign up

Export Citation Format

Share Document