A hidden semi-Markov model for indoor radio source localization using received signal strength

2020 ◽  
Vol 166 ◽  
pp. 107230 ◽  
Author(s):  
Shuai Sun ◽  
Xuezhi Wang ◽  
Bill Moran ◽  
Wayne S.T. Rowe
Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2392
Author(s):  
Óscar Belmonte-Fernández ◽  
Emilio Sansano-Sansano ◽  
Antonio Caballer-Miedes ◽  
Raúl Montoliu ◽  
Rubén García-Vidal ◽  
...  

Indoor localization is an enabling technology for pervasive and mobile computing applications. Although different technologies have been proposed for indoor localization, Wi-Fi fingerprinting is one of the most used techniques due to the pervasiveness of Wi-Fi technology. Most Wi-Fi fingerprinting localization methods presented in the literature are discriminative methods. We present a generative method for indoor localization based on Wi-Fi fingerprinting. The Received Signal Strength Indicator received from a Wireless Access Point is modeled by a hidden Markov model. Unlike other algorithms, the use of a hidden Markov model allows ours to take advantage of the temporal autocorrelation present in the Wi-Fi signal. The algorithm estimates the user’s location based on the hidden Markov model, which models the signal and the forward algorithm to determine the likelihood of a given time series of Received Signal Strength Indicators. The proposed method was compared with four other well-known Machine Learning algorithms through extensive experimentation with data collected in real scenarios. The proposed method obtained competitive results in most scenarios tested and was the best method in 17 of 60 experiments performed.


Sign in / Sign up

Export Citation Format

Share Document