indoor radio
Recently Published Documents


TOTAL DOCUMENTS

522
(FIVE YEARS 35)

H-INDEX

40
(FIVE YEARS 3)

Author(s):  
Mohd Nazeri Kamaruddin ◽  
Tan Kim Geok ◽  
Omar Abdul Aziz ◽  
Tharek Abd Rahman ◽  
Ferdous Hossain ◽  
...  

This paper explained an adaptive ray tracing technique in modelling indoor radio wave propagation. As compared with conventional ray tracing approach, the presented ray tracing approach offers an optimized method to trace the travelling radio signal by introducing flexibility and adaptive features in ray launching algorithm in modelling the radio wave for indoor scenarios. The simulation result was compared with measurements data for verification. By analyzing the results, the proposed adaptive technique showed a better improvement in simulation time, power level and coverage in modelling the radio wave propagation for indoor scenario and may benefit in the development of signal propagation simulators for future technologies.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Yaoqi Yang ◽  
Xianglin Wei ◽  
Renhui Xu ◽  
Laixian Peng ◽  
Yunliang Liao ◽  
...  

Indoor robots, in particular AI-enhanced robots, are enabling a wide range of beneficial applications. However, great cyber or physical damages could be resulted if the robots’ vulnerabilities are exploited for malicious purposes. Therefore, a continuous active tracking of multiple robots’ positions is necessary. From the perspective of wireless communication, indoor robots are treated as radio sources. Existing radio tracking methods are sensitive to indoor multipath effects and error-prone with great cost. In this backdrop, this paper presents an indoor radio sources tracking algorithm. Firstly, an RSSI (received signal strength indicator) map is constructed based on the interpolation theory. Secondly, a YOLO v3 (You Only Look Once Version 3) detector is applied on the map to identify and locate multiple radio sources. Combining a source’s locations at different times, we can reconstruct its moving path and track its movement. Experimental results have shown that in the typical parameter settings, our algorithm’s average positioning error is lower than 0.39 m, and the average identification precision is larger than 93.18% in case of 6 radio sources.


Sensors ◽  
2021 ◽  
Vol 21 (18) ◽  
pp. 6107
Author(s):  
Won-Yeol Kim ◽  
Soo-Ho Tae ◽  
Dong-Hoan Seo

Fingerprinting is the term used to describe a common indoor radio-mapping positioning technology that tracks moving objects in real time. To use this, a substantial number of measurement processes and workflows are needed to generate a radio-map. Accordingly, to minimize costs and increase the usability of such radio-maps, this study proposes an access-point (AP)-centered window (APCW) radio-map generation network (RGN). The proposed technique extracts parts of a radio-map in the form of a window based on AP floor plan coordinates to shorten the training time while enhancing radio-map prediction accuracy. To provide robustness against changes in the location of the APs and to enhance the utilization of similar structures, the proposed RGN, which employs an adversarial learning method and uses the APCW as input, learns the indoor space in partitions and combines the radio-maps of each AP to generate a complete map. By comparing four learning models that use different data structures as input based on an actual building, the proposed radio-map learning model (i.e., APCW-based RGN) obtains the highest accuracy among all models tested, yielding a root-mean-square error value of 4.01 dBm.


2021 ◽  
pp. 1-1
Author(s):  
Yingxiang Sun ◽  
Haoqiu Xiong ◽  
Danny Kai Pin Tan ◽  
Tony Xiao Han ◽  
Rui Du ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document