Particle swarm optimization based parametrization of adhesion and creep force models for simulation and modelling of railway vehicle systems with traction

2020 ◽  
Vol 99 ◽  
pp. 102026 ◽  
Author(s):  
Altan Onat ◽  
Petr Voltr
2019 ◽  
Vol 2019 ◽  
pp. 1-16 ◽  
Author(s):  
Yan Huang ◽  
Jianhui Lin ◽  
Zechao Liu ◽  
Chenguang Huang

With the rapid development of high-speed railway, the fault diagnosis of railway vehicles has become more and more important for ensuring the operating safety. The MF is a nonlinear signal processing method which can extract the modulated faulty information via reshaping the analyzed signal. However, the choices of operators and structure elements (SE) are numerous and complicated to determine the best MF solution for different bearing faulty signals. In this paper, the particle swarm optimization (PSO) was introduced to optimize the effect of MF among several classical MF operators and different SE parameters. The proposed method applied PSO to select the best MF result with respect to the fitness function adopting kurtosis. A set of bearing signals with additional interference of wheel-track excitement are analyzed to verify the effectiveness of the proposed method. The results demonstrated that the proposed method is capable of obtaining the optimized solution and accurately extracting the fault information. Furthermore, the shaft rotation frequency and wheel-track interference were reduced by the proposed method.


2012 ◽  
Author(s):  
Arfah Syahida Mohd Nor ◽  
Hazlina Selamat ◽  
Ahmad Jais Alimin

This paper presents the design of an active suspension control of a two–axle railway vehicle using an optimized linear quadratic regulator. The control objective is to minimize the lateral displacement and yaw angle of the wheelsets when the vehicle travels on straight and curved tracks with lateral irregularities. In choosing the optimum weighting matrices for the LQR, the Particle Swarm Optimization (PSO) method has been applied and the results of the controller performance with weighting matrices chosen using this method is compared with the commonly used, trial and error method. The performance of the passive and active suspension has also been compared. The results show that the active suspension system performs better than the passive suspension system. For the active suspension, the LQR employing the PSO method in choosing the weighting matrices provides a better control performance and a more systematic approach compared to the trial and error method. Key words: active suspension control, two–axle railway vehicle, linear quadratic regulator, particle swarm optimization


2020 ◽  
Vol 39 (4) ◽  
pp. 5699-5711
Author(s):  
Shirong Long ◽  
Xuekong Zhao

The smart teaching mode overcomes the shortcomings of traditional teaching online and offline, but there are certain deficiencies in the real-time feature extraction of teachers and students. In view of this, this study uses the particle swarm image recognition and deep learning technology to process the intelligent classroom video teaching image and extracts the classroom task features in real time and sends them to the teacher. In order to overcome the shortcomings of the premature convergence of the standard particle swarm optimization algorithm, an improved strategy for multiple particle swarm optimization algorithms is proposed. In order to improve the premature problem in the search performance algorithm of PSO algorithm, this paper combines the algorithm with the useful attributes of other algorithms to improve the particle diversity in the algorithm, enhance the global search ability of the particle, and achieve effective feature extraction. The research indicates that the method proposed in this paper has certain practical effects and can provide theoretical reference for subsequent related research.


Author(s):  
Fachrudin Hunaini ◽  
Imam Robandi ◽  
Nyoman Sutantra

Fuzzy Logic Control (FLC) is a reliable control system for controlling nonlinear systems, but to obtain optimal fuzzy logic control results, optimal Membership Function parameters are needed. Therefore in this paper Particle Swarm Optimization (PSO) is used as a fast and accurate optimization method to determine Membership Function parameters. The optimal control system simulation is carried out on the automatic steering system of the vehicle model and the results obtained are the vehicle's lateral motion error can be minimized so that the movement of the vehicle can always be maintained on the expected trajectory


2012 ◽  
Vol 3 (4) ◽  
pp. 1-4
Author(s):  
Diana D.C Diana D.C ◽  
◽  
Joy Vasantha Rani.S.P Joy Vasantha Rani.S.P ◽  
Nithya.T.R Nithya.T.R ◽  
Srimukhee.B Srimukhee.B

Sign in / Sign up

Export Citation Format

Share Document