Characterization of small nerve fibers in painful distal symmetric polyneuropathy and healthy controls

2015 ◽  
Vol 8 (1) ◽  
pp. 51
Author(s):  
P. Karlsson ◽  
S. Haroutounian ◽  
M. Polydefkis ◽  
J.R. Nyengaard ◽  
T.S. Jensen

AbstractAimsThe introduction of skin biopsies to examine small nerve fiber morphology together with functional measures such as quantitative sensory testing (QST) has led to an improvement in diagnosing patients with small fiber neuropathy (SFN). Quantification of intraepidermal nerve fiber density (IENFD) is an important measure in SFN. However, the relationship between structure and function is not straightforward and the morphological and functional fiber characteristics are still unclear. This study aimed to combine structural and functional measurements to improve the diagnosis of distal symmetric polyneuropathy and small fiber involvement. Additionally, we investigated whether patients and healthy controls have differential patterns of correlations between structural and functional nerve measurements.Methods17 patients with painful distal symmetric polyneu-ropathy (DSP) and 19 controls underwent comprehensive small fiber assessments that included quantitative sensory testing, response to topical capsaicin and analysis of skin biopsy samples (IENFD, epidermal and dermal nerve fiber length densities (eNFLD, dNFLD) and swellings).ResultsDSP patients had reduced sensitivity to cold and heat, diminished capsaicin response, and lower IENFD, eNFLD and dNFLD (all p < 0.0003).The correlation between structural and functional parameters was better in controls than in DSP. A diagnostic approach of combined IENFD and eNFLD utilization, increased DSP diagnostic sensitivity from 82.0% to 100% and specificity from 84.0% to 89.5%.ConclusionsA correlation is found between functional and structural small fiber parameters for DSP and controls, and an approach to improve diagnostic accuracy in DSP is suggested.

2021 ◽  
Vol 2 ◽  
Author(s):  
Ioannis N. Petropoulos ◽  
Gulfidan Bitirgen ◽  
Maryam Ferdousi ◽  
Alise Kalteniece ◽  
Shazli Azmi ◽  
...  

Neuropathic pain has multiple etiologies, but a major feature is small fiber dysfunction or damage. Corneal confocal microscopy (CCM) is a rapid non-invasive ophthalmic imaging technique that can image small nerve fibers in the cornea and has been utilized to show small nerve fiber loss in patients with diabetic and other neuropathies. CCM has comparable diagnostic utility to intraepidermal nerve fiber density for diabetic neuropathy, fibromyalgia and amyloid neuropathy and predicts the development of diabetic neuropathy. Moreover, in clinical intervention trials of patients with diabetic and sarcoid neuropathy, corneal nerve regeneration occurs early and precedes an improvement in symptoms and neurophysiology. Corneal nerve fiber loss also occurs and is associated with disease progression in multiple sclerosis, Parkinson's disease and dementia. We conclude that corneal confocal microscopy has good diagnostic and prognostic capability and fulfills the FDA criteria as a surrogate end point for clinical trials in peripheral and central neurodegenerative diseases.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Elena Vacchi ◽  
Camilla Senese ◽  
Giacomo Chiaro ◽  
Giulio Disanto ◽  
Sandra Pinton ◽  
...  

AbstractThe proximity ligation assay (PLA) is a specific and sensitive technique for the detection of αSyn oligomers (αSyn-PLA), early and toxic species implicated in the pathogenesis of PD. We aimed to evaluate by skin biopsy the diagnostic and prognostic capacity of αSyn-PLA and small nerve fiber reduction in PD in a longitudinal study. αSyn-PLA was performed in the ankle and cervical skin biopsies of PD (n = 30), atypical parkinsonisms (AP, n = 23) including multiple system atrophy (MSA, n = 12) and tauopathies (AP-Tau, n = 11), and healthy controls (HC, n = 22). Skin biopsy was also analyzed for phosphorylated αSyn (P-αSyn) and 5G4 (αSyn-5G4), a conformation-specific antibody to aggregated αSyn. Intraepidermal nerve fiber density (IENFD) was assessed as a measure of small fiber neuropathy. αSyn-PLA signal was more expressed in PD and MSA compared to controls and AP-Tau. αSyn-PLA showed the highest diagnostic accuracy (PD vs. HC sensitivity 80%, specificity 77%; PD vs. AP-Tau sensitivity 80%, specificity 82%), however, P-αSyn and 5G4, possible markers of later phases, performed better when considering the ankle site alone. A small fiber neuropathy was detected in PD and MSA. A progression of denervation not of pathological αSyn was detected at follow-up and a lower IENFD at baseline was associated with a greater cognitive and motor decline in PD. A skin biopsy-derived compound marker, resulting from a linear discrimination analysis model of αSyn-PLA, P-αSyn, αSyn-5G4, and IENFD, stratified patients with accuracy (77.8%), including the discrimination between PD and MSA (84.6%). In conclusion, the choice of pathological αSyn marker and anatomical site influences the diagnostic performance of skin biopsy and can help in understanding the temporal dynamics of αSyn spreading in the peripheral nervous system during the disease. Skin denervation, not pathological αSyn is a potential progression marker for PD.


2018 ◽  
Vol 48 (10) ◽  
pp. 767-774 ◽  
Author(s):  
Colette Ridehalgh ◽  
Oliver P. Sandy-Hindmarch ◽  
Annina B. Schmid

2011 ◽  
Vol 69 (6) ◽  
pp. 943-948 ◽  
Author(s):  
Pedro Schestatsky ◽  
Luciana Cadore Stefani ◽  
Paulo Roberto Sanches ◽  
Danton Pereira da Silva Júnior ◽  
Iraci Lucena Silva Torres ◽  
...  

Quantitative sensory testing (QST) is defined as the determination of thresholds for sensory perception under controlled stimulus. Our aim was to validate a new QST device for Brazilian sample. In 20 healthy adults, thermoalgesic thresholds were assessed using a QST prototype (Heat Pain Stimulator-1.1.10; Brazil). A 30 × 30 mm² thermode with a 1°C/s stimulus change rate were applied. Thresholds of three consecutive stimuli were averaged in two different sessions separated by at least two weeks. Additionally long thermal heat pain stimulus was performed. To evaluate the consistency of our method we also analyzed 11 patients with small fiber neuropathy. Results showed good reproducibility of thermal perception thresholds in normal individuals and plausible abnormal thresholds in patients. We conclude that our QST device is reliable when analyzing the nociceptive pathway in controls and patients.


Sign in / Sign up

Export Citation Format

Share Document