heat pain
Recently Published Documents


TOTAL DOCUMENTS

348
(FIVE YEARS 66)

H-INDEX

43
(FIVE YEARS 3)

2022 ◽  
Vol 2 ◽  
Author(s):  
Katharina Barcatta ◽  
Elisabeth Holl ◽  
Layla Battistutta ◽  
Marian van der Meulen ◽  
Katharina M. Rischer

Virtual reality (VR) is a powerful method of redirecting attention away from pain. Yet, little is known about which factors modulate the size of this distraction effect. The aim of this study was to investigate the role of cognitive load and inter-individual differences in the cognitive and affective domain on heat pain thresholds during a VR game. Ninety healthy participants (mean age ± SD: 23.46 ± 3.28; 50% identified as male and 50% as female) played a low and high load version of a VR game while heat pain thresholds and heart rate were recorded. The effects of cognitive load were assessed by computing the difference in pain thresholds between the high and low load condition for each participant. In addition, we computed the difference in heart rate variability (HRV) measures between both conditions to explore whether these would be correlated with the difference in heat pain thresholds. Prior to the VR session, participants completed questionnaires about their emotional distress, pain-related cognitions, and different executive functioning tasks. Contrary to our expectations, not all participants benefitted from a higher load in terms of distraction from pain. Logistic regression analysis revealed that participants who reported more emotional distress were more likely to exhibit higher pain thresholds in the low relative to the high load condition. Accordingly, these participants tended to show marginally higher HRV in the low compared to the high load condition. Our study demonstrates that the potential benefits of an increased cognitive load in VR on pain sensitivity depends on individual differences in affective state.


10.52586/5047 ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 1537-1547
Author(s):  
Fu-Jung Hsiao ◽  
Wei-Ta Chen ◽  
Li-Ling Hope Pan ◽  
Hung-Yu Liu ◽  
Yen-Feng Wang ◽  
...  

2021 ◽  
Vol 2 ◽  
Author(s):  
Jessica F. McDougall ◽  
Nicole G. N. Bailey ◽  
Rohan Banga ◽  
Lukas D. Linde ◽  
John L. K. Kramer

Background: The influence of examiner gender on pain reporting has been previously explored in both research and clinical settings. However, previous investigations have been limited, with the majority of studies employing single, static assessments of pain (e.g., cold pressor test, verbal pain ratings). The impact of examiner gender on both static and dynamic heat-based pain assessments is currently unknown.Methods: Thirty eight participants (20 females aged 24.1 ± 4.44, and 18 males, aged 24.8 ± 4.54) completed two identical testing sessions, randomized to a male and female examiner in a cross-over design. Pain sensitivity was examined using heat pain thresholds, verbal pain ratings to tonic heat, computerized visual analog scale (CoVAS) rating to tonic heat, and participant-controlled temperature (PCT) heat pain assessments.Results: Female participants reported higher verbal pain to tonic heat with a female examiner compared to male participants, with similar trends for CoVAS responses to tonic heat. Conversely heat pain thresholds and PCT were not significantly influenced by experimenter gender.Conclusions: Overall, verbal ratings were the most impacted by examiner gender, with temperature-based methods such as PCT and pain thresholds showing little to no examiner gender effects. While the gender of the examiner may be an important consideration in the measurement of sex and gender differences in pain research, the choice of pain assessment method may be of similar consequence.


2021 ◽  
Author(s):  
Ahmed NEGM ◽  
Katharina STOBBE ◽  
Lucile FLEURIOT ◽  
Delphine DEBAYLE ◽  
Emmanuel DEVAL ◽  
...  

Diet induced obesity is one of the major causes of obesity, which affects 13% of the world's adult population. Obesity is correlated to chronic pain regardless of other components of the metabolic syndrome. Our study focuses on investigating the effect of high-fat diet induced obesity on peripheral sensory neurons activity and pain perception, followed by deciphering the underlying cellular and molecular mechanisms that involve Acid-Sensing Ion Channel 3 (ASIC3). We show here that heat sensitive C-fibers from mice made obese by consumption of a high-fat diet exhibited an increased activity during baseline and upon heating. Obese mice showed long-lasting heat pain hypersensitivity once obesity was well established, while mechanical sensitivity was not affected. We found that the serum of obese mice was enriched in lysophosphatidylcholine (LPC) species (LPC16:0, LPC18:0 and LPC18:1), which activate ASIC3 channels and increased peripheral neuron excitability. Genetic deletion and in vivo pharmacological inhibition of ASIC3 protected and rescued mice from obesity-induced thermal hypersensitivity. Our results identify ASIC3 channels in DRG neurons and circulating LPC species that activate them as a mechanism contributing to heat pain hypersensitivity associated with high-fat diet induced obesity.


Cephalalgia ◽  
2021 ◽  
pp. 033310242110565
Author(s):  
Jan Petter Neverdahl ◽  
Martin Uglem ◽  
Dagfinn Matre ◽  
Johannes Orvin Hansen ◽  
Morten Engstrøm ◽  
...  

Objective There is an unexplained association between disturbed sleep and migraine. In this blinded crossover study, we investigate if experimental sleep restriction has a different effect on pain thresholds and suprathreshold pain in interictal migraineurs and controls. Methods Forearm heat pain thresholds and tolerance thresholds, and trapezius pressure pain thresholds and suprathreshold pain were measured in 39 interictal migraineurs and 31 healthy controls after two consecutive nights of partial sleep restriction and after habitual sleep. Results The effect of sleep restriction was not significantly different between interictal migraineurs and controls in the primary analyses. Pressure pain thresholds tended to be lower (i.e., increased pain sensitivity) after sleep restriction in interictal migraineurs compared to controls with a 48-hour preictal-interictal cut-off (p = 0.061). We found decreased pain thresholds after sleep restriction in two of seven migraine subgroup comparisons: heat pain thresholds decreased in migraineurs with lower pain intensity during attacks (p = 0.005) and pressure pain thresholds decreased in migraineurs with higher severity of photophobia during attacks (p = 0.031). Heat pain thresholds tended to decrease after sleep restriction in sleep-related migraine (p = 0.060). Sleep restriction did not affect suprathreshold pain measurements in either group. Conclusion This study could not provide strong evidence for an increased effect of sleep restriction on pain sensitivity in migraineurs compared to healthy controls. There might be a slightly increased effect of sleep restriction in migraineurs, detectable using large samples or more pronounced in certain migraine subgroups.


2021 ◽  
Vol 2 ◽  
Author(s):  
Cora Wagner ◽  
Jens Gaab ◽  
Cosima Locher ◽  
Karin Hediger

Animal-assisted interventions (AAIs) have been shown to be effective in the treatment of pain. Studies suggest that relationships with animals can have comparable qualities to relationships with humans and that this enables animals to provide social support. Further, the presence of an animal can strengthen the therapeutic alliance between patients and treatment providers. This suggests that the analgesic effects of AAI might be mediated by social support from an animal or by strengthening the alliance between the patient and the treatment provider. To test these assumptions, we examined the effects of the presence of a dog on experimentally induced pain in a pain assessment and a pain therapy context. Hundred thirty-two healthy participants were randomly assigned to the conditions “pain,” “pain + dog,” “pain + placebo,” or “pain + placebo + dog.” We collected baseline and posttreatment measurements of heat-pain tolerance and the heat-pain threshold and of the corresponding subjective ratings of heat-pain intensity and unpleasantness as well as of participants' perceptions of the study investigator. The primary outcome was heat-pain tolerance. The presence of the dog did not influence the primary outcome (“pain” vs. “pain + dog”: difference = 0.04, CI = −0.66 to 0.74, p = 0.905; “pain + placebo” vs. “pain + placebo + dog”: difference = 0.43, CI = −0.02 to 0.88, p = 0.059). Participants did also not perceive the study investigator to be more trustworthy in the presence of the dog (“pain” vs. “pain + dog”: difference = 0.10, CI = −0.67 to 0.87, p = 0.796; “pain + placebo” vs. “pain + placebo + dog”: difference = 0.11, CI = −0.43 to 0.64, p = 0.695). The results indicate that the mere presence of a dog does not contribute to pain reduction and that the analgesic effects of AAI that previous studies have found is not replicated in our study as AAI did not increase perceived social support and had no effect on the alliance between the participant and the treatment provider. We assume that the animal most likely needs to be an integrated and plausible part of the treatment rationale so that participants are able to form a treatment-response expectation toward AAI.Clinical Trial Registration: This study was preregistered as a clinical trial on www.clinicaltrials.gov (Identifier: NCT0389814).


2021 ◽  
Vol 2 ◽  
Author(s):  
Benjamin Provencher ◽  
Stéphane Northon ◽  
Mathieu Piché

Musculoskeletal injuries lead to sensitization of nociceptors and primary hyperalgesia (hypersensitivity to painful stimuli). This occurs with back injuries, which are associated with acute pain and increased pain sensitivity at the site of injury. In some cases, back pain persists and leads to central sensitization and chronic pain. Thus, reducing primary hyperalgesia to prevent central sensitization may limit the transition from acute to chronic back pain. It has been shown that spinal manipulation (SM) reduces experimental and clinical pain, but the effect of SM on primary hyperalgesia and hypersensitivity to painful stimuli remains unclear. The goal of the present study was to investigate the effect of SM on pain hypersensitivity using a capsaicin-heat pain model. Laser stimulation was used to evoke heat pain and the associated brain activity, which were measured to assess their modulation by SM. Eighty healthy participants were recruited and randomly assigned to one of the four experimental groups: inert cream and no intervention; capsaicin cream and no intervention; capsaicin cream and SM at T7; capsaicin cream and placebo. Inert or capsaicin cream (1%) was applied to the T9 area. SM or placebo were performed 25 min after cream application. A series of laser stimuli were delivered on the area of cream application (1) before cream application, (2) after cream application but before SM or placebo, and (3) after SM or placebo. Capsaicin cream induced a significant increase in laser pain (p < 0.001) and laser-evoked potential amplitude (p < 0.001). However, SM did not decrease the amplification of laser pain or laser-evoked potentials by capsaicin. These results indicate that segmental SM does not reduce pain hypersensitivity and the associated pain-related brain activity in a capsaicin-heat pain model.


2021 ◽  
Vol 6 ◽  
pp. 250
Author(s):  
Sonia Santana-Varela ◽  
Yury D. Bogdanov ◽  
Samuel J. Gossage ◽  
Andrei L. Okorokov ◽  
Shengnan Li ◽  
...  

Background: Somatosensation depends on primary sensory neurons of the trigeminal and dorsal root ganglia (DRG). Transcriptional profiling of mouse DRG sensory neurons has defined at least 18 distinct neuronal cell types. Using an advillin promoter, we have generated a transgenic mouse line that only expresses diphtheria toxin A (DTA) in sensory neurons in the presence of Cre recombinase. This has allowed us to ablate specific neuronal subsets within the DRG using a range of established and novel Cre lines that encompass all sets of sensory neurons.    Methods: A floxed-tdTomato-stop-DTA bacterial artificial chromosome (BAC) transgenic reporter line (AdvDTA) under the control of the mouse advillin DRG promoter was generated. The line was first validated using a Nav1.8Cre and then crossed to CGRPCreER (Calca), ThCreERT2, Tmem45bCre, Tmem233Cre, Ntng1Cre and TrkBCreER (Ntrk2) lines. Pain behavioural assays included Hargreaves’, hot plate, Randall-Selitto, cold plantar, partial sciatic nerve ligation and formalin tests. Results: Motor activity, as assessed by the rotarod test, was normal for all lines tested. Noxious mechanosensation was significantly reduced when either Nav1.8 positive neurons or Tmem45b positive neurons were ablated whilst acute heat pain was unaffected. In contrast, noxious mechanosensation was normal following ablation of CGRP-positive neurons but acute heat pain thresholds were significantly elevated and a reduction in nocifensive responses was observed in the second phase of the formalin test. Ablation of TrkB-positive neurons led to significant deficits in mechanical hypersensitivity in the partial sciatic nerve ligation neuropathic pain model. Conclusions: Ablation of specific DRG neuronal subsets using the AdvDTA line will be a useful resource for further functional characterization of somatosensory processing, neuro-immune interactions and chronic pain disorders.


2021 ◽  
Vol 24 (6) ◽  
pp. E783-E794

BACKGROUND: Simple tools are needed to predict postoperative pain. Questionnaire-based tools such as the Pain Sensitivity Questionnaire (PSQ) are validated for this purpose, but prediction could be improved by incorporating other parameters. OBJECTIVES: To explore the potency of sensitivity to nonpainful stimuli and biometric data to improve prediction of pain. STUDY DESIGN: Transversal exploratory study. SETTING: Single clinical investigation center. METHODS. Eighty-five healthy volunteers of both genders underwent a multimodal exploration including biometry, questionnaire-based assessment of anxiety, depression, pain catastrophizing, sensitivity to smell, and the PSQ, followed by a psychophysical assessment of unpleasantness thresholds for light and sound, and sensitivity to mechanical, heat, and cold pain. These last 3 parameters were used to calculate a composite pain score. After a multi-step selection, multivariable analyses identified the explanative factors of experimental pain sensitivity, by including biometric, questionnaire-based, and psychophysical nonnociceptive sensitivity parameters, with the aim of having each domain represented. RESULTS: Female gender predicted mechanical pain, a younger age and dark eyes predicted cold pain, and the PSQ predicted heat pain. Sensitivity to unpleasantness of sound predicted mechanical and heat pain, and sensitivity to unpleasantness of light predicted cold pain. Sensitivity to smell was unrelated. The predictors of the composite pain score were the PSQ, the light unpleasantness threshold, and an interaction between gender and eye color, the score being lower in light-eyed men and higher in all women. The final multivariable multi-domain model was more predictive of pain than the PSQ alone (R2 = 0.301 vs 0.122, respectively). LIMITATIONS: Sensitivity to smell was only assessed by a short questionnaire and could lack relevance. Healthy volunteers were unlikely to elicit psychological risk factors such as anxiety, depression, or catastrophizing. These results have not been validated in a clinical setting (e.g., perioperative). CONCLUSION: The predictive potential of the PSQ can be improved by including information about gender, eye color, and light sensitivity. However, there is still a need for a technique suitable for routine clinical use to assess light sensitivity. KEY WORDS: Personalized medicine, postoperative pain, senses, prediction, photophobia, hyperacusis, eye color, hypervigilance, sensory over-responsivity


Sign in / Sign up

Export Citation Format

Share Document