Comparison of phospholipid fatty acid (PLFA) and total soil fatty acid methyl esters (TSFAME) for characterizing soil microbial communities

2004 ◽  
Vol 36 (11) ◽  
pp. 1793-1800 ◽  
Author(s):  
Rebecca E. Drenovsky ◽  
Geoff N. Elliott ◽  
Kenneth J. Graham ◽  
Kate M. Scow
Agronomy ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 173
Author(s):  
Huiling Guan ◽  
Jiangwen Fan ◽  
Haiyan Zhang ◽  
Warwick Harris

Soil erosion is prevalent in karst areas, but few studies have compared the differences in the drivers for soil microbial communities among karst ecosystems with different soil depths, and most studies have focused on the local scale. To fill this research gap, we investigated the upper 20 cm soil layers of 10 shallow–soil depth (shallow–SDC, total soil depth less than 100 cm) and 11 deep–soil depth communities (deep–SDC, total soil depth more than 100 cm), covering a broad range of vegetation types, soils, and climates. The microbial community characteristics of both the shallow–SDC and deep–SDC soils were tested by phospholipid fatty acid (PLFAs) analysis, and the key drivers of the microbial communities were illustrated by forward selection and variance partitioning analysis. Our findings demonstrated that more abundant soil nutrients supported higher fungal PLFA in shallow–SDC than in deep–SDC (p < 0.05). Furthermore, stronger correlation between the microbial community and the plant–soil system was found in shallow–SDC: the pure plant effect explained the 43.2% of variance in microbial biomass and 57.8% of the variance in the ratio of Gram–positive bacteria to Gram–negative bacteria (G+/G−), and the ratio of fungi to total bacteria (F/B); the pure soil effect accounted for 68.6% variance in the microbial diversity. The ratio of microbial PLFA cyclopropyl to precursors (Cy/Pr) and the ratio of saturated PLFA to monounsaturated PLFA (S/M) as indicators of microbial stress were controlled by pH, but high pH was not conducive to microorganisms in this area. Meanwhile, Cy/Pr in all communities was >0.1, indicating that microorganisms were under environmental stress. Therefore, the further ecological restoration of degraded karst communities is needed to improve their microbial communities.


2021 ◽  
Author(s):  
Xiaonan An ◽  
Yunqi Wang ◽  
Jialiang Zhang

Abstract BackgroundAn insight into the soil microbial functions and spatial distribution of soil resources is an important basis for evaluating and managing plant growth in subtropical forests. Soil samples were collected from five forest stands in Jinyun Mountain Natural Reserve (JMNR) in Chongqing located at the Three Gorges Reservoir area: Gordonia acuminata evergreen broad-leaved forest (GAEBF), Cunninghamia lanceolata forest (CLF), Phyllostachys pubescens forest (PPF), coniferous and broad-leaved mixed forest (CBLMF) dominated by Pinus massoniana and Gordonia acuminata (PM&GA), and the CBLMF dominated by Pinus massoniana and Symplocos setchuensis (PM&SS). Combined with phospholipid fatty acid (PLFA) analysis and Sherlock microbial identification system (MIS), the structure of soil microbial communities in different forest stands was investigated.ResultsThe results showed that the PLFAs of soil microorganisms under the forest in JMNR have a high diversity. The PLFA dominance values of the five stands were 16:0, 19:0 cyclo ω7c, 18:0, 15:0 iso and 16 :0 10-methyl. Furthermore, soil microorganisms are dominated by Gram-negative bacteria, and the PLFAs content of soil bacteria in different forest stands is higher than that of fungi PLFAs. Regarding the phospholipid fatty acid biomarkers, the two CBLMFs are the highest, followed by CLF and GAEBF and PPF is the least. Moreover, the proportion of microorganisms in the soil of different forest stands varies. Among them, MP&SS has the highest gram-negative bacteria, gram-positive bacteria, actinomycetes and fungi.ConclusionsRDA analysis shows that the main influencing factors of PLFAs in the soil of different forest stands are the content of iron oxide, aluminium oxide, organic matter and total nitrogen in the soil, which are considered to be able to reflect the soil nutrient status of JMNR effectively.


PLoS ONE ◽  
2021 ◽  
Vol 16 (5) ◽  
pp. e0251501
Author(s):  
Wenjuan Yu ◽  
Huanhuan Gao ◽  
Hongzhang Kang

As an alternative for phospholipid fatty acid (PLFA) analysis, a simpler ester linked fatty acid (ELFA) analysis has been developed to characterize soil microbial communities. However, few studies have compared the two methods in forest soils where the contribution of nonmicrobial sources may be larger than that of microbial sources. Moreover, it remains unclear whether the two methods yield similar relationships of microbial biomass and composition with environmental variables. Here, we compared PLFA and ELFA methods with respect to microbial biomass and composition and their relationships with environmental variables in six oriental oak (Quercus variabilis) forest sites along a 1500-km latitudinal gradient in East China. We found that both methods had a low sample-to-sample variability and successfully separated overall community composition of sites. However, total, bacterial, and fungal biomass, the fungal-to-bacterial ratio, and the gram-positive to gram-negative bacteria ratio were not significantly or strongly correlated between the two methods. The relationships of these microbial properties with environmental variables (pH, precipitation, and clay) greatly differed between the two methods. Our study indicates that despite its simplicity, the ELFA method may not be as feasible as the PLFA method for investigating microbial biomass and composition and for identifying their dominant environmental drivers, at least in forest soils.


Sign in / Sign up

Export Citation Format

Share Document