Long-term manure application increases soil organic matter and aggregation, and alters microbial community structure and keystone taxa

2019 ◽  
Vol 134 ◽  
pp. 187-196 ◽  
Author(s):  
Yongxin Lin ◽  
Guiping Ye ◽  
Yakov Kuzyakov ◽  
Deyan Liu ◽  
Jianbo Fan ◽  
...  
2021 ◽  
Author(s):  
Klaus A Jarosch ◽  
Luis Carlos Colocho Hurtarte ◽  
Konstantin Gavazov ◽  
Aleksander Westphal Muniz ◽  
Christoph Müller ◽  
...  

<p>The conversion of tropical forest for cassava cultivation is widely known to decrease the soil organic matter (OM) and nutrient contents of highly weathered soils in the tropics. Amazonian Dark Earth (ADE) might be more resistant to this process due to their historical anthropogenic amelioration with e.g. charcoal, ceramics and bones, leading to higher soil OM and nutrient concentrations. In this study, we analyzed the effect of land use change on the OM dynamics under tropical conditions and how this is related with P distribution at the microscale, using ADE and an adjacent Acrisol (ACR) as model systems. Soil samples were obtained south of Manaus (Brazil), from a secondary forest and an adjacently located 40-year-old cassava plantation. The land use change induced a severe decrease of organic carbon (OC) concentrations in ADE (from 35 to 15 g OC kg<sup>‑1</sup>) while OC in the adjacent ACR was less affected (18 to 16 g OC kg<sup>‑1</sup>). The analysis by <sup>13</sup>C NMR spectroscopy showed that the conversion of secondary forest to cassava changed the chemical composition of OM to a more decomposed state (increase of alkyl:O/N-alkyl ratio) in the ADE whereas the OM in ACR changed to a less decomposed state (decrease of alkyl:O/N-alkyl ratio). According to neutral sugar and lipid extraction analyses, land use change led to a larger impact on the microbial-derived and plant-derived compounds in the ADE compared to the ACR. In order to analyze the interactions of OC and P at the microscale, we conducted an incubation experiment with <sup>13</sup>C glucose for the analysis with Scanning X-ray Microscopy (SXM) and Nano scale Secondary Ion Mass Spectrometry (NanoSIMS). In both soil types ADE and ACR, land use change caused a reduction of the total <sup>13</sup>C glucose respiration by approximately one third in a 7-days incubation, implying lower microbial activity. Microorganisms in both soil types appear to be more readily active in soils under forest, since we observed a distinct lag time between <sup>13</sup>C glucose addition and respiration under cassava planation. This indicated differences in microbial community structure, which we will be assessed further by determining the <sup>13</sup>C label uptake by the microbial biomass and the microbial community structure using <sup>13</sup>C PLFA analysis. Preliminary results from synchrotron-based STXM demonstrate a distinct arrangement of OM at fine-sized charcoal-particle interfaces. From ongoing NanoSIMS analyses, we expect further insights on the co-localization of P and <sup>13</sup>C-labelled spots at the microscale. Despite the high loss of OC in the ameliorated ADE through land use change, the remaining OM might foster nutrient dynamics at the microscale thanks to charcoal interactions compared to the ACR. Our results contribute to a better understanding of the C and P interactions and how these respond to land use change in highly weathered tropical soils.</p>


Sign in / Sign up

Export Citation Format

Share Document