Direct and indirect influences of long-term fertilization on microbial carbon and nitrogen cycles in an alpine grassland

2020 ◽  
Vol 149 ◽  
pp. 107922
Author(s):  
Wenjing Chen ◽  
Huakun Zhou ◽  
Yang Wu ◽  
Jie Wang ◽  
Ziwen Zhao ◽  
...  
2014 ◽  
Vol 63 (1) ◽  
pp. 129-138 ◽  
Author(s):  
János Kátai ◽  
á. Oláh ◽  
Zs. Sándor ◽  
M. Tállai

In a long-term fertilization field experiment set up in Debrecen-Látókép in 1983 on calcareous chernozem soil the changes in the chemical and microbiological characteristics related to the carbon and nitrogen cycles of the soil are shown and evaluated. The soil samples were taken in the 26th and 27th years of the experiment, (in 2009, 2010) from maize monoculture and tri-culture. In addition to the effects of fertilizer doses, correlations among soil chemical and microbiological properties were established; and the various ratios among some microbiological parameters were also evaluated.The elements of NPK fertilizers increased together with the doses, so the elements’ effect cannot be separated, the minimum factor is not identifiable.With increasing fertilizer doses, the soil pH decreased in both the mono- and triculture, parallelly there was a significant increase in hydrolytic acidity. A close negative correlation was proved between the pH(H2O) and hydrolytic acidity and pH(KCl) and hydrolytic acidity. An increased soil nutrient content was recorded in each NPK treatment, the available phosphorus and nitrate content increased in a higher proportion than that of potassium.Among the measured parameters of the carbon and nitrogen cycles fertilization had a positive influence on the organic carbon (OC), organic nitrogen (ON), microbial biomass carbon (MBC), microbial biomass nitrogen (MBN) contents, the number of cellulose decomposing and nitrifying bacteria, the nitrate exploration and CO2-production, while it mainly had negative effects on the investigated enzymes (saccharase and urease) activity.Evaluating the ratios among the measured parameters, fertilization seems to have promoted the increase in nitrogen-containing organic compounds, because the OC/ON and MBC/MBN ratios decreased due to the effect of different doses of NPK fertilizers in both cultures.


2022 ◽  
Vol 158 ◽  
pp. 106889
Author(s):  
Yu Han ◽  
Mu Zhang ◽  
Xiaofeng Chen ◽  
Weidong Zhai ◽  
Ehui Tan ◽  
...  

2019 ◽  
Vol 135 ◽  
pp. 144-153 ◽  
Author(s):  
Lucia Fuchslueger ◽  
Birgit Wild ◽  
Maria Mooshammer ◽  
Mounir Takriti ◽  
Sandra Kienzl ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jianqiang Li ◽  
Qibo Chen ◽  
Zhuang Li ◽  
Bangxiao Peng ◽  
Jianlong Zhang ◽  
...  

AbstractThe carbon (C) pool in forest ecosystems plays a long-term and sustained role in mitigating the impacts of global warming, and the sequestration of C is closely linked to the nitrogen (N) cycle. Accurate estimates C and N storage (SC, SN) of forest can improve our understanding of C and N cycles and help develop sustainable forest management policies in the content of climate change. In this study, the SC and SN of various forest ecosystems dominated respectively by Castanopsis carlesii and Lithocarpus mairei (EB), Pinus yunnanensis (PY), Pinus armandii (PA), Keteleeria evelyniana (KE), and Quercus semecarpifolia (QS) in the central Yunnan Plateau of China, were estimated on the basis of a field inventory to determine the distribution and altitudinal patterns of SC and SN among various forest ecosystems. The results showed that (1) the forest SC ranged from 179.58 ± 20.57 t hm−1 in QS to 365.89 ± 35.03 t hm−1 in EB. Soil, living biomass and litter contributed an average of 64.73%, 31.72% and 2.86% to forest SC, respectively; (2) the forest SN ranged from 4.47 ± 0.94 t ha−1 in PY to 8.91 ± 1.83 t ha−1 in PA. Soil, plants and litter contributed an average of 86.88%, 10.27% and 2.85% to forest SN, respectively; (3) the forest SC and SN decreased apparently with increasing altitude. The result demonstrates that changes in forest types can strongly affect the forest SC and SN. This study provides baseline information for forestland managers regarding forest resource utilization and C management.


2017 ◽  
Vol 81 (2) ◽  
pp. 310-321 ◽  
Author(s):  
Sarah M. Collier ◽  
Matthew D. Ruark ◽  
Mack R. Naber ◽  
Todd W. Andraski ◽  
Michael D. Casler

Sign in / Sign up

Export Citation Format

Share Document