Free-field response of a transversely isotropic saturated half-space subjected to incident plane qP1- and qSV-waves

2019 ◽  
Vol 125 ◽  
pp. 105702 ◽  
Author(s):  
Zhenning Ba ◽  
Jianwen Liang ◽  
Vincent W. Lee ◽  
Qiaozhi Sang
2014 ◽  
Vol 61-62 ◽  
pp. 135-139 ◽  
Author(s):  
Morteza Eskandari-Ghadi ◽  
Seyed Masoud Nabizadeh ◽  
Azizollah Ardeshir-Behrestaghi

1982 ◽  
Vol 10 (6) ◽  
pp. 823-845 ◽  
Author(s):  
John P. Wolf ◽  
Pius Obernhuber

2017 ◽  
Vol 84 (11) ◽  
Author(s):  
Yilan Huang ◽  
Guozhan Xia ◽  
Weiqiu Chen ◽  
Xiangyu Li

Exact solutions to the three-dimensional (3D) contact problem of a rigid flat-ended circular cylindrical indenter punching onto a transversely isotropic thermoporoelastic half-space are presented. The couplings among the elastic, hydrostatic, and thermal fields are considered, and two different sets of boundary conditions are formulated for two different cases. We use a concise general solution to represent all the field variables in terms of potential functions and transform the original problem to the one that is mathematically expressed by integral (or integro-differential) equations. The potential theory method is extended and applied to exactly solve these integral equations. As a consequence, all the physical quantities of the coupling fields are derived analytically. To validate the analytical solutions, we also simulate the contact behavior by using the finite element method (FEM). An excellent agreement between the analytical predictions and the numerical simulations is obtained. Further attention is also paid to the discussion on the obtained results. The present solutions can be used as a theoretical reference when practically applying microscale image formation techniques such as thermal scanning probe microscopy (SPM) and electrochemical strain microscopy (ESM).


Sign in / Sign up

Export Citation Format

Share Document