Seismic isolation design for simply-supported beam bridges based on the energy balance method under near-fault ground motions

2021 ◽  
Vol 145 ◽  
pp. 106730
Author(s):  
Yu Li ◽  
Chen Li ◽  
Guo-Hui Zhao
Author(s):  
Pinxia Wu ◽  
Weiwei Ling ◽  
Xiumei Li ◽  
Xichun He ◽  
Liangjin Xie

In this paper, we mainly focus on a fractal model of Fangzhu’s nanoscale surface for water collection which is established through He’s fractal derivative. Based on the fractal two-scale transform method, the approximate analytical solutions are obtained by the energy balance method and He’s frequency–amplitude formulation method with average residuals. Some specific numerical experiments of the model show that these two methods are simple and effective and can be adopted to other nonlinear fractal oscillators. In addition, these properties of the obtained solution reveal how to enhance the collection rate of Fangzhu by adjusting the smoothness of its surfaces.


1994 ◽  
Vol 19 ◽  
pp. 107-113 ◽  
Author(s):  
Takeshi Ohta

A distributed snowmelt prediction model was developed for a mountain area. Topography of the study area was represented by a digital map. Cells On the map were divided into three surface-cover types; deciduous forest, evergreen forest and deforested area. Snowmelt rates for each cell were calculated by an energy balance method. Meteorological elements were estimated separately in each cell according to topographical characteristics and surface-cover type. Distributions of water equivalent of snow cover were estimated by the model. Snowmelt runoff in the watershed was also simulated by snowmelt rates calculated by the model. The model showed thai the snowmelt period and snowmelt runoff after timber harvests would be about two weeks earlier than under the forest-covered condition.


Author(s):  
Dongming Feng ◽  
Fangyin Zhang

Many of the existing multi-span simply supported bridges in New York State, U.S., are susceptible to earthquake damage and need to be retrofitted to reduce their seismic risk. In this study, seismic retrofit of a five-span simply supported bridge with typical high-type fixed and expansion steel rocker bearings is conducted. A refined three-dimensional (3D) finite element model of the bridge is developed in ANSYS by considering foundation impedances. Multi-support time history analyses have been implemented in the seismic retrofit design for two levels of ground motions: 1,000- and 2,500-year return period earthquakes. The site-specific ground motions with consideration of the spatial variation are generated based on the geotechnical information. Seismic retrofit by replacing existing steel bearings with lead-rubber bearing (LRB) isolators has been adopted. The parameters of the isolators are determined by considering factors such as the seismic performance and translational resistance during normal service. The vulnerability of structural members and seismic retrofit effectiveness are quantified by the demand-to-capacity (D/C) ratio for the combined demands at the extreme limit state. The analyses show that after seismic isolation retrofit the pervasive vulnerabilities in pier columns and cap beams are eliminated. Comparing with strengthening the vunerable structural members, seismic isolation is proved a cost-effective retrofit solution. The overall seismic isolation design and analysis procedures presented in this study can help guide future seismic retrofit of similar types of bridges.


Sign in / Sign up

Export Citation Format

Share Document