scholarly journals CFD analysis for solar chimney power plants

Solar Energy ◽  
2013 ◽  
Vol 98 ◽  
pp. 12-22 ◽  
Author(s):  
Hermann F. Fasel ◽  
Fanlong Meng ◽  
Ehsan Shams ◽  
Andreas Gross
2020 ◽  
Vol 9 (4) ◽  
pp. 57-73
Author(s):  
Hela Atia ◽  
Adrian Ilinca ◽  
Ali Snoussi ◽  
Rachid Boukchina ◽  
Ammar Ben Brahim

A CFD analysis using ANSYS Fluent software was conducted to study the effects of collector slope on solar chimney's performances. Three solar chimney configurations, named A, B, and C, which correspond, respectively, to an inclination angle of the collector roof of 0°, 2.5°, and 5°, were investigated. The results show that the thermodynamic performances of the solar chimney were improved by increasing the inclination angle of the collector roof. In fact, the power extracted from the sloped solar chimney power plants increases with increasing the inclination angle and the solar radiation intensity, while it achieves a maximum at 800 W/m2 for configuration A. The energetic and the exergetic analysis show that configure B has the best performance in terms of conventional, effective, and total efficiencies of the collector and in terms of exergy destruction ratios in both the collector and the transition section. Whereas, configuration C has the highest amount of power extracted and the best overall energetic efficiency.


Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 674
Author(s):  
Paul Caicedo ◽  
David Wood ◽  
Craig Johansen

Solar chimney power plants (SCPPs) collect air heated over a large area on the ground and exhaust it through a turbine or turbines located near the base of a tall chimney to produce renewable electricity. SCPP design in practice is likely to be specific to the site and of variable size, both of which require a purpose-built turbine. If SCPP turbines cannot be mass produced, unlike wind turbines, for example, they should be as cheap as possible to manufacture as their design changes. It is argued that a radial inflow turbine with blades made from metal sheets, or similar material, is likely to achieve this objective. This turbine type has not previously been considered for SCPPs. This article presents the design of a radial turbine to be placed hypothetically at the bottom of the Manzanares SCPP, the only large prototype to be built. Three-dimensional computational fluid dynamics (CFD) simulations were used to assess the turbine’s performance when installed in the SCPP. Multiple reference frames with the renormalization group k-ε turbulence model, and a discrete ordinates non-gray radiation model were used in the CFD simulations. Three radial turbines were designed and simulated. The largest power output was 77.7 kW at a shaft speed of 15 rpm for a solar radiation of 850 W/m2 which exceeds by more than 40 kW the original axial turbine used in Manzanares. Further, the efficiency of this turbine matches the highest efficiency of competing turbine designs in the literature.


Author(s):  
Md. Abdul Aziz Bhuiyan ◽  
Md Abdul Aziz Bhuiyan ◽  
Mehedi Hasan Bhuiyan ◽  
Mehedi Hasan Bhuiyan ◽  
Md Ashiqur Rahman ◽  
...  

2010 ◽  
Vol 7 (6) ◽  
pp. 577-592 ◽  
Author(s):  
S. Lorente ◽  
A. Koonsrisuk ◽  
A. Bejan
Keyword(s):  

OALib ◽  
2016 ◽  
Vol 03 (05) ◽  
pp. 1-18
Author(s):  
Christos D. Papageorgiou

Solar Energy ◽  
2005 ◽  
Vol 79 (5) ◽  
pp. 449-458 ◽  
Author(s):  
E. Bilgen ◽  
J. Rheault

2006 ◽  
Vol 31 (12) ◽  
pp. 1873-1891 ◽  
Author(s):  
F. Denantes ◽  
E. Bilgen
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document