Three-dimensional CFD analysis for simulating the greenhouse effect in solar chimney power plants using a two-band radiation model

2014 ◽  
Vol 63 ◽  
pp. 498-506 ◽  
Author(s):  
Ehsan Gholamalizadeh ◽  
Man-Hoe Kim
Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 674
Author(s):  
Paul Caicedo ◽  
David Wood ◽  
Craig Johansen

Solar chimney power plants (SCPPs) collect air heated over a large area on the ground and exhaust it through a turbine or turbines located near the base of a tall chimney to produce renewable electricity. SCPP design in practice is likely to be specific to the site and of variable size, both of which require a purpose-built turbine. If SCPP turbines cannot be mass produced, unlike wind turbines, for example, they should be as cheap as possible to manufacture as their design changes. It is argued that a radial inflow turbine with blades made from metal sheets, or similar material, is likely to achieve this objective. This turbine type has not previously been considered for SCPPs. This article presents the design of a radial turbine to be placed hypothetically at the bottom of the Manzanares SCPP, the only large prototype to be built. Three-dimensional computational fluid dynamics (CFD) simulations were used to assess the turbine’s performance when installed in the SCPP. Multiple reference frames with the renormalization group k-ε turbulence model, and a discrete ordinates non-gray radiation model were used in the CFD simulations. Three radial turbines were designed and simulated. The largest power output was 77.7 kW at a shaft speed of 15 rpm for a solar radiation of 850 W/m2 which exceeds by more than 40 kW the original axial turbine used in Manzanares. Further, the efficiency of this turbine matches the highest efficiency of competing turbine designs in the literature.


2020 ◽  
Vol 143 (6) ◽  
Author(s):  
Ulku Ece Ayli ◽  
Ekin Özgirgin ◽  
Maısarh Tareq

Abstract One of the most promising renewable energy sources is solar energy due to low cost and low harmful emissions, and from the 1980s, one of the most beneficial applications of solar energy is the utilization of solar chimney power plants (SCPP). Recently, with the advancement in computer technology, the use of computational fluid dynamics (CFD) methodology for studying SCPP has become an extensive, robust, and powerful technique. In light of the above, in this study, numerical simulations of an SCPP through three-dimensional axisymmetric modeling is performed. A numerical model is created using CFD software, and the results are verified with an experimental study from the literature. The amount of solar radiation and surrounding weather (ambient temperature) were analyzed, and the effects of the irradiance and air temperature on the output power of the SCPP were studied. Ambient temperature is considered as one of the most important factors that influence collector efficiency in a negative or a positive manner. Solar irradiance is considered to be the most important factor that has an impact on SCPP performance. The investigation includes the study of the relationship between solar insolation and ambient temperatures during the daytime since the difference between the minimum and maximum power values and the performance are very important considering seasonal changes. According to the results, power values are dependent on the amount of solar radiation as well as the ambient temperature, and the importance of selection of location thus climate for an SCPP is found to affect the design of the SCPP.


Solar Energy ◽  
2013 ◽  
Vol 98 ◽  
pp. 12-22 ◽  
Author(s):  
Hermann F. Fasel ◽  
Fanlong Meng ◽  
Ehsan Shams ◽  
Andreas Gross

2020 ◽  
Vol 9 (4) ◽  
pp. 57-73
Author(s):  
Hela Atia ◽  
Adrian Ilinca ◽  
Ali Snoussi ◽  
Rachid Boukchina ◽  
Ammar Ben Brahim

A CFD analysis using ANSYS Fluent software was conducted to study the effects of collector slope on solar chimney's performances. Three solar chimney configurations, named A, B, and C, which correspond, respectively, to an inclination angle of the collector roof of 0°, 2.5°, and 5°, were investigated. The results show that the thermodynamic performances of the solar chimney were improved by increasing the inclination angle of the collector roof. In fact, the power extracted from the sloped solar chimney power plants increases with increasing the inclination angle and the solar radiation intensity, while it achieves a maximum at 800 W/m2 for configuration A. The energetic and the exergetic analysis show that configure B has the best performance in terms of conventional, effective, and total efficiencies of the collector and in terms of exergy destruction ratios in both the collector and the transition section. Whereas, configuration C has the highest amount of power extracted and the best overall energetic efficiency.


Author(s):  
Md. Abdul Aziz Bhuiyan ◽  
Md Abdul Aziz Bhuiyan ◽  
Mehedi Hasan Bhuiyan ◽  
Mehedi Hasan Bhuiyan ◽  
Md Ashiqur Rahman ◽  
...  

2010 ◽  
Vol 7 (6) ◽  
pp. 577-592 ◽  
Author(s):  
S. Lorente ◽  
A. Koonsrisuk ◽  
A. Bejan
Keyword(s):  

ACS Omega ◽  
2021 ◽  
Vol 6 (4) ◽  
pp. 2759-2766
Author(s):  
Jiali Du ◽  
Zhiquan Hui ◽  
Feng Wu ◽  
Yuan Yan ◽  
Kai Yue ◽  
...  

Author(s):  
Guodong Sun ◽  
Xuejing Duan ◽  
Bo Hao ◽  
Afshin Davarpanah

Nitrogen oxides are considered as one of the greenhouse gases. Among the most significant emission sources for this gas is a natural gas-fired power plant. The United Nations General assembly suggested in 1988 that human activities can negatively impact weather patterns, and thus they should be controlled. This control policy can improve the efficiency of final consumers such as power plants, cars, or other energy-intensive industries. In this paper, the existing strategies and explicitly making the dry low nitrogen oxides burner reduce greenhouse gases in power plants are explored. The geometry of the burner has been produced in a three-dimensional form in GAMBIT software, and the results of the simulation have been expressed through FLUENT software. Contours of pressure, temperature, and velocity of the fluid in the furnace are also derived. It is concluded that the dry low nitrogen oxides burners plan has a better result compared with other strategies.


Sign in / Sign up

Export Citation Format

Share Document