radial turbine
Recently Published Documents


TOTAL DOCUMENTS

390
(FIVE YEARS 84)

H-INDEX

17
(FIVE YEARS 3)

2022 ◽  
Author(s):  
V. Hariram ◽  
S. Seralathan ◽  
Y. Earnest Paul ◽  
P. Vijayabalan

2021 ◽  
pp. 1-15
Author(s):  
Roberto Mosca ◽  
Shyang M. Lim ◽  
Mihai Mihaescu

Abstract Under on-engine operating conditions, a turbocharger turbine is subject to a pulsating flow and, consequently, experiences deviations from the performance measured in gas-stand flow conditions. Furthermore, due to the high exhaust gases temperatures, heat transfer further deteriorates the turbine performance. The complex interaction of the aerothermodynamic mechanisms occurring inside the hot-side, and consequently the turbine behavior, is largely affected by the shape of the pulse, which can be parameterized through three parameters: pulse amplitude, frequency, and temporal gradient. This paper investigates the hot-side system response to the pulse amplitude via Detached Eddy Simulations (DES) of a turbocharger radial turbine system including exhaust manifold. Firstly, the computational model is validated against experimental data obtained in gas-stand flow conditions. Then, two different mass flow pulses, characterized by a pulse amplitude difference of 5%, are compared. An exergy-based post-processing approach shows the beneficial effects of increasing the pulse amplitude. An improvement of the turbine power by 1.3%, despite the increment of the heat transfer and total internal irreversibilities by 5.8% and 3.4\%, respectively, is reported. As a result of the higher maximum speeds, internal losses by viscous friction are responsible for the growth of the total internal irreversibilities as pulse amplitude increases.


Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7807
Author(s):  
Muhammad Saeed ◽  
Abdallah S. Berrouk ◽  
Burhani M. Burhani ◽  
Ahmed M. Alatyar ◽  
Yasser F. Al Wahedi

Turbine as a key power unit is vital to the novel supercritical carbon dioxide cycle (sCO2-BC). At the same time, the turbine design and optimization process for the sCO2-BC is complicated, and its relevant investigations are still absent in the literature due to the behavior of supercritical fluid in the vicinity of the critical point. In this regard, the current study entails a multifaceted approach for designing and optimizing a radial turbine system for an 8 MW sCO2 power cycle. Initially, a base design of the turbine is calculated utilizing an in-house radial turbine design and analysis code (RTDC), where sharp variations in the properties of CO2 are implemented by coupling the code with NIST’s Refprop. Later, 600 variants of the base geometry of the turbine are constructed by changing the selected turbine design geometric parameters, i.e., shroud ratio (rs4r3), hub ratio (rs4r3), speed ratio (νs) and inlet flow angle (α3) and are investigated numerically through 3D-RANS simulations. The generated CFD data is then used to train a deep neural network (DNN). Finally, the trained DNN model is employed as a fitting function in the multi-objective genetic algorithm (MOGA) to explore the optimized design parameters for the turbine’s rotor geometry. Moreover, the off-design performance of the optimized turbine geometry is computed and reported in the current study. Results suggest that the employed multifaceted approach reduces computational time and resources significantly and is required to completely understand the effects of various turbine design parameters on its performance and sizing. It is found that sCO2-turbine performance parameters are most sensitive to the design parameter speed ratio (νs), followed by inlet flow angle (α3), and are least receptive to shroud ratio (rs4r3). The proposed turbine design methodology based on the machine learning algorithm is effective and substantially reduces the computational cost of the design and optimization phase and can be beneficial to achieve realistic and efficient design to the turbine for sCO2-BC.


2021 ◽  
Vol 107 ◽  
pp. 103408
Author(s):  
Lei Pan ◽  
Mingyang Yang ◽  
Shota Murae ◽  
Wataru Sato ◽  
Tomoki Kawakubo ◽  
...  

2021 ◽  
Vol 2087 (1) ◽  
pp. 012037
Author(s):  
Han Zhang ◽  
Hua Chen ◽  
Chao Ma ◽  
Feng Guo

Abstract Radial turbine is widely used in micro-turbines, turbochargers, small jet engines and expanders, and the pursue of high system efficiency has resulted in elevated turbine inlet temperatures for some of its applications, threatening its reliability. There are, however, few cooling studies on radial turbines. This paper studies the jet impingement cooling of a turbocharger radial turbine. A small amount of air (coolant), which could come from compressor discharge cooled by an intercooler, is injected through a few jet holes on the heat shield of the turbine onto the upper part of turbine backdisc, to cool the rotor blades and the backdisc. Parameters that may affect the cooling were studied by a Conjugated Heat Transfer (CHT) numerical simulation using steady flow calculations. The influences to the cooling effects by different coolant-to-turbine mass flow ratios, Coolant-to-turbine inlet temperature ratio, number of the jets etc. were analysed by a steady flow simulation. The simulation results show that, when four jet holes are placed at blade leading edge radius, using 1.0% ~ 3.0% of the main gas mass flow of coolant, the average temperature on leading edge, inducer hub and backdisc surface is reduced by 2K ~ 17K,27K ~ 65K and 51K ~ 70K respectively. Turbine efficiency is mostly reduced little over 1% point.


Author(s):  
Ahmed Ketata ◽  
Zied Driss

Hybridization of engines is the future technology to overcome the increasing emissions of CO2 and pollutants from internal combustion engines. So far, the current technology, called downsizing, involves reducing engine size while maintaining continuous engine boosting with a turbocharger. It is well known that the radial turbine, an essential component of turbochargers, is a seat of various loss mechanisms such as incidence losses which significantly affect performance. As a contribution for further improving performance and reducing loss generation in radial turbines, this study investigates the effect of the blade number on performance and loss generation within a radial turbine of small scale turbocharger. To this end, six radial turbines were designed with several blade numbers ranging from three up to thirteen. The flow solution was computed by solving the Navier-Stokes equations using a CFD solver. The numerical results were validated against experiments. The results revealed that the impeller of 11 blades provides better performance than the other investigated designs. The results showed a substantial effect of the number of blades on the distribution of flow characteristics and loss generation. The efficiency, mass flow rate, output torque, blade loading, and leakage flow through the clearance gap of the turbine were correlated to the number of blades.


Author(s):  
Alex Nakos ◽  
Bernd Beirow ◽  
Arthur Zobel

Abstract The radial turbine impeller of an exhaust turbocharger is analyzed in view of both free vibration and forced response. Due to random blade mistuning resulting from unavoidable inaccuracies in manufacture or material inhomogeneities, localized modes of vibration may arise, which involve the risk of severely magnified blade displacements and inadmissibly high stress levels compared to the tuned counterpart. Contrary, the use of intentional mistuning (IM) has proved to be an efficient measure to mitigate the forced response. Independently, the presence of aerodynamic damping is significant with respect to limit the forced response since structural damping ratios of integrally bladed rotors typically take extremely low values. Hence, a detailed knowledge of respective damping ratios would be desirable while developing a robust rotor design. For this, far-reaching experimental investigations are carried out to determine the damping of a comparative wheel within a wide pressure range by simulating operation conditions in a pressure tank. Reduced order models are built up for designing suitable intentional mistuning patterns by using the subset of nominal system modes (SNM) approach introduced by Yang and Griffin [1], which conveniently allows for accounting both differing mistuning patterns and the impact of aeroelastic interaction by means of aerodynamic influence coefficients (AIC). Further, finite element analyses are carried out in order to identify appropriate measures how to implement intentional mistuning patterns, which are featuring only two different blade designs. In detail, the impact of specific geometric modifications on blade natural frequencies is investigated.


2021 ◽  
Author(s):  
Roberto Mosca ◽  
Shyang Maw Lim ◽  
Mihai Mihaescu

Abstract The pulsating flow conditions which a turbocharger turbine is exposed cause important deviations of the turbine aerodynamic performance when compared to steady flow conditions. Indeed, the secondary flows developing in the turbine are determined by the inflow aerodynamic conditions, which largely vary during the pulse cycle. In this paper, a high-resolved Large Eddy Simulation is performed to investigate and characterize the flow field evolution in a turbocharger radial turbine over the pulse cycle. At first, the model is validated against experimental results obtained in gas-stand flow conditions. Then, the instantaneous flow field at the rotor mid-span section is compared to the one given by the equivalent cycle-averaged steady flow conditions. The results highlight five distinct flow features. At low mass flow rates, when the relative inflow angle assumes large negative values, the flow separates at the blade pressure side, causing a secondary flow consisting in two counter-rotating vortices characterized by a diameter comparable to the blade passage. As the mass flow rate increases, the first vortex persists at the blade tip while the second one moves closer to the blade trailing edge. This corresponds to the second characteristic flow field. With increasing relative inflow angle, for the third characteristic flow feature, only the recirculation at the blade leading edge is displayed and its size gradually reduces. For the fourth characteristic flow feature, at moderate negative values of the relative inflow angle, the flow field is well aligned with the blade profile and free of secondary flows. Then, as the relative inflow angle gradually grows towards large positive values, the flow separates on the blade suction side causing the mixing of the flow with the stream flowing on the pressure side of the previous blade.


2021 ◽  
pp. 146808742110344
Author(s):  
José Galindo ◽  
Andrés Omar Tiseira ◽  
Luis Miguel García-Cuevas ◽  
Nicolás Medina

The current paper presents the validation of some hypotheses used for developing a one-dimensional twin-entry turbine model with experimental measurements. A Laser Doppler Anemometry (LDA) technique has been used for measuring the axial Mach number and for counting the number of particles downstream of the rotor outlet. These measurements have been done for different mass flow ratio (MFR) and reduced turbocharger speed conditions. The flow coming from each turbine entry does not fully mix with the other within the rotor since, downstream of the rotor, they can still be differentiated. Thus, the hypothesis of studying twin-entry turbines as two separated single-entry turbines in one-dimensional models is corroborated. Moreover, the rotor outlet area corresponding to each flow branch has linear trends with the MFR value. Therefore, the rotor outlet effective area used for one-dimensional models should vary linearly with the MFR value.


Sign in / Sign up

Export Citation Format

Share Document